Bài 1: Tứ Giác
Hướng dẫn giải Bài 2 (Trang 66 SGK Toán Hình học 8, Tập 1)
<p>G&oacute;c kề b&ugrave; với một g&oacute;c của tứ gi&aacute;c gọi l&agrave; g&oacute;c ngo&agrave;i của tứ gi&aacute;c.&nbsp;<br /><br /><img src="https://vietjack.com/giai-toan-lop-8/images/bai-2-trang-66-sgk-toan-8-tap-1.PNG" alt="Giải b&agrave;i 2 trang 66 To&aacute;n 8 Tập 1 | Giải b&agrave;i tập To&aacute;n 8" /></p> <p><strong>LG a.</strong></p> <p>T&iacute;nh c&aacute;c g&oacute;c ngo&agrave;i của tứ gi&aacute;c ở h&igrave;nh 7a.<br />Phương ph&aacute;p giải:<br />&Aacute;p dụng định l&yacute;: Tổng c&aacute;c g&oacute;c trong tứ gi&aacute;c bằng <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>360</mn><mo>&#8728;</mo></msup></math><br />Lời giải chi tiết:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mi>A</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>B</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>C</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>D</mi><mo>^</mo></mover><mo>=</mo><msup><mn>360</mn><mn>0</mn></msup></mstyle></math> (định l&yacute; tổng c&aacute;c g&oacute;c của tứ gi&aacute;c)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mi>D</mi><mo>^</mo></mover><mo>=</mo><msup><mn>360</mn><mn>0</mn></msup><mo>-</mo><mrow><mo>(</mo><mover accent="true"><mi>A</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>B</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>C</mi><mo>^</mo></mover><mo>)</mo></mrow></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>=</mo><msup><mn>360</mn><mn>0</mn></msup><mo>-</mo><mrow><mo>(</mo><msup><mn>75</mn><mn>0</mn></msup><mo>+</mo><msup><mn>90</mn><mn>0</mn></msup><mo>+</mo><msup><mn>120</mn><mn>0</mn></msup><mo>)</mo></mrow></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>=</mo><msup><mn>360</mn><mn>0</mn></msup><mo>-</mo><msup><mn>285</mn><mn>0</mn></msup></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>=</mo><msup><mn>75</mn><mn>0</mn></msup></mstyle></math><br />Ta c&oacute;:<br />+) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>B</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>D</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><msub><mi>A</mi><mn>1</mn></msub><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup></mstyle></math> (2 g&oacute;c kề b&ugrave;)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><msub><mi>A</mi><mn>1</mn></msub><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup><mo>-</mo><mover accent="true"><mrow><mi>B</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>D</mi></mrow><mo>^</mo></mover></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup><mo>-</mo><msup><mn>75</mn><mn>0</mn></msup><mo>=</mo><msup><mn>105</mn><mn>0</mn></msup><mo>.</mo></math><br />+) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><msub><mi>B</mi><mn>1</mn></msub><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>C</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>A</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup></mstyle></math> (2 g&oacute;c kề b&ugrave;)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><msub><mi>B</mi><mn>1</mn></msub><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup><mo>-</mo><mover accent="true"><mrow><mi>C</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>A</mi></mrow><mo>^</mo></mover></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup><mo>-</mo><msup><mn>90</mn><mn>0</mn></msup><mo>=</mo><msup><mn>90</mn><mo>&#8728;</mo></msup><mo>.</mo></math><br />+) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><msub><mi>C</mi><mn>1</mn></msub><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>B</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>D</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mo>&#8728;</mo></msup></mstyle></math> (2 g&oacute;c kề b&ugrave;)<strong><br /></strong></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><msub><mi>C</mi><mn>1</mn></msub><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup><mo>-</mo><mpadded><mover accent="true"><mrow><mi>B</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>D</mi></mrow><mo>^</mo></mover></mpadded><mspace linebreak="newline"/><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup><mo>-</mo><msup><mn>120</mn><mn>0</mn></msup><mo>=</mo><mpadded><msup><mn>60</mn><mn>0</mn></msup></mpadded><mspace linebreak="newline"/><mo>+</mo><mo>)</mo><mover accent="true"><msub><mi>D</mi><mn>1</mn></msub><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>A</mi><mo>&#8290;</mo><mi>D</mi><mo>&#8290;</mo><mi>C</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup><mspace linebreak="newline"/><mover accent="true"><msub><mi>D</mi><mn>1</mn></msub><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup><mo>-</mo><mpadded><mover accent="true"><mi>ADC</mi><mo>^</mo></mover></mpadded><mspace linebreak="newline"/><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup><mo>-</mo><msup><mn>75</mn><mn>0</mn></msup><mo>=</mo><msup><mn>105</mn><mn>0</mn></msup></math><br /><strong>LG b.</strong><br />T&iacute;nh tổng c&aacute;c g&oacute;c ngo&agrave;i của tứ gi&aacute;c ở h&igrave;nh 7b</p> <p>(tại mỗi đỉnh của tứ gi&aacute;c chỉ chọn một g&oacute;c ngo&agrave;i): <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><msub><mi>A</mi><mn>1</mn></msub><mo>^</mo></mover><mo>+</mo><mover accent="true"><msub><mi>B</mi><mn>1</mn></msub><mo>^</mo></mover><mo>+</mo><mover accent="true"><msub><mi>C</mi><mn>1</mn></msub><mo>^</mo></mover><mo>+</mo><mover accent="true"><msub><mi>D</mi><mn>1</mn></msub><mo>^</mo></mover><mo>=</mo><mi mathvariant="normal">?</mi></mstyle></math><br /><strong>Phương ph&aacute;p giải:</strong><br />&Aacute;p dụng định l&yacute;: Tổng c&aacute;c g&oacute;c trong tứ gi&aacute;c bằng <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>360</mn><mn>0</mn></msup></math><br /><strong>Lời giải chi tiết:</strong><br />Ta c&oacute;:<br />+) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mi>A</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><msub><mi>A</mi><mn>1</mn></msub><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup></mstyle></math> (2 g&oacute;c kề b&ugrave;) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mover accent="true"><msub><mi>A</mi><mn>1</mn></msub><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup><mo>-</mo><mover accent="true"><mi>A</mi><mo>^</mo></mover></mstyle></math><br />+) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mi>B</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><msub><mi>B</mi><mn>1</mn></msub><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup></mstyle></math> (2 g&oacute;c kề b&ugrave;) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mover accent="true"><msub><mi>B</mi><mn>1</mn></msub><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup><mo>-</mo><mover accent="true"><mi>B</mi><mo>^</mo></mover></mstyle></math><br />+) <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mi>C</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><msub><mi>C</mi><mn>1</mn></msub><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup></math> (2 g&oacute;c kề b&ugrave;) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mover accent="true"><msub><mi>C</mi><mn>1</mn></msub><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup><mo>-</mo><mover accent="true"><mi>C</mi><mo>^</mo></mover></mstyle></math><br />+) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mi>D</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><msub><mi>D</mi><mn>1</mn></msub><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup></mstyle></math> (2 g&oacute;c kề b&ugrave;) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mover accent="true"><msub><mi>D</mi><mn>1</mn></msub><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup><mo>-</mo><mover accent="true"><mi>D</mi><mo>^</mo></mover></mstyle></math><br />Lại c&oacute;: <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mi>A</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>B</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>C</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>D</mi><mo>^</mo></mover><mo>=</mo><msup><mn>360</mn><mn>0</mn></msup></mstyle></math> (định l&yacute; tổng 4 g&oacute;c trong tứ gi&aacute;c ABCD)</p> <p>Ta c&oacute;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8290;</mo><mover accent="true"><msub><mi>A</mi><mn>1</mn></msub><mo>^</mo></mover><mo>+</mo><mover accent="true"><msub><mi>B</mi><mn>1</mn></msub><mo>^</mo></mover><mo>+</mo><mover accent="true"><msub><mi>C</mi><mn>1</mn></msub><mo>^</mo></mover><mo>+</mo><mpadded><mover accent="true"><msub><mi>D</mi><mn>1</mn></msub><mo>^</mo></mover></mpadded><mo>=</mo><mo>&#8290;</mo><mrow><mo>(</mo><msup><mn>180</mn><mn>0</mn></msup><mo>-</mo><mover accent="true"><mi>A</mi><mo>^</mo></mover><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><msup><mn>180</mn><mn>0</mn></msup><mo>-</mo><mover accent="true"><mi>B</mi><mo>^</mo></mover><mo>)</mo></mrow><mo>&#8290;</mo><mo>+</mo><mrow><mo>(</mo><msup><mn>180</mn><mn>0</mn></msup><mo>-</mo><mover accent="true"><mi>C</mi><mo>^</mo></mover><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><msup><mn>180</mn><mn>0</mn></msup><mo>-</mo><mover accent="true"><mi>D</mi><mo>^</mo></mover><mo>)</mo></mrow><mspace linebreak="newline"/><mo>=</mo><mo>&#8290;</mo><msup><mn>180</mn><mn>0</mn></msup><mo>&#8290;</mo><mn>.4</mn><mo>-</mo><mrow><mo>(</mo><mover accent="true"><mi>A</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>B</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>C</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>D</mi><mo>^</mo></mover><mo>)</mo></mrow><mspace linebreak="newline"/><mo>=</mo><mo>&#8290;</mo><msup><mn>720</mn><mn>0</mn></msup><mo>-</mo><msup><mn>360</mn><mn>0</mn></msup><mo>=</mo><msup><mn>360</mn><mn>0</mn></msup><mo>&#8290;</mo></math><br /><strong>LG c.</strong><br />C&oacute; nhận x&eacute;t g&igrave; về tổng c&aacute;c g&oacute;c ngo&agrave;i của tứ gi&aacute;c?<br /><strong>Phương ph&aacute;p giải:</strong><br />&Aacute;p dụng t&iacute;nh chất: Tổng hai g&oacute;c kề b&ugrave; bằng <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>180</mn><mo>&#8728;</mo></msup></math><br /><strong>Lời giải chi tiết:</strong><br />Nhận x&eacute;t: Tổng c&aacute;c g&oacute;c ngo&agrave;i của tứ gi&aacute;c bằng <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>180</mn><mo>&#8728;</mo></msup></math></p>
Xem lời giải bài tập khác cùng bài