Bài 1: Tứ Giác
Hướng dẫn giải Bài 1 (Trang 66 SGK Toán Hình học 8, Tập 1)
<p><strong class="content_question">Đề b&agrave;i</strong></p> <p>T&igrave;m x ở h&igrave;nh 5, h&igrave;nh 6:</p> <p><img src="https://vietjack.com/giai-toan-lop-8/images/bai-1-trang-66-sgk-toan-8-tap-1.PNG" alt="Giải b&agrave;i 1 trang 66 To&aacute;n 8 Tập 1 | Giải b&agrave;i tập To&aacute;n 8" /></p> <p><strong class="content_detail">Lời giải chi tiết</strong></p> <p><strong>&Aacute;p dụng: Tổng bốn g&oacute;c trong 1 tứ gi&aacute;c bằng&nbsp;360<sup>0</sup></strong></p> <p><strong>Ta c&oacute;:</strong></p> <p><strong>Ở h&igrave;nh 5</strong></p> <p>a) &Aacute;p dụng định l&iacute; tổng c&aacute;c g&oacute;c của một tứ gi&aacute;c v&agrave;o tứ gi&aacute;c ABCD ta được:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mi>A</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>B</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>C</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>D</mi><mo>^</mo></mover><mo>=</mo><mpadded><msup><mn>360</mn><mn>0</mn></msup></mpadded><mspace linebreak="newline"></mspace><mo>&#8658;</mo><mover accent="true"><mi>D</mi><mo>^</mo></mover><mo>=</mo><msup><mn>360</mn><mo>&#8728;</mo></msup><mo>-</mo><mrow><mo>(</mo><mover accent="true"><mi>A</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>B</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>C</mi><mo>^</mo></mover><mo>)</mo></mrow><mspace linebreak="newline"></mspace><mo>&#8658;</mo><mi>x</mi><mo>=</mo><msup><mn>360</mn><mn>0</mn></msup><mo>-</mo><mrow><mo>(</mo><msup><mn>110</mn><mn>0</mn></msup><mo>+</mo><msup><mn>120</mn><mo>&#8728;</mo></msup><mo>+</mo><msup><mn>80</mn><mn>0</mn></msup><mo>)</mo></mrow><mspace linebreak="newline"></mspace><mo>=</mo><msup><mn>360</mn><mn>0</mn></msup><mo>-</mo><msup><mn>310</mn><mn>0</mn></msup><mo>=</mo><msup><mn>50</mn><mn>0</mn></msup></math><br />b) &Aacute;p dụng định l&iacute; tổng c&aacute;c g&oacute;c của một tứ gi&aacute;c v&agrave;o tứ gi&aacute;c EFGH ta được:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mi>E</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>F</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>G</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>H</mi><mo>^</mo></mover><mo>=</mo><mpadded><msup><mn>360</mn><mo>&#8728;</mo></msup></mpadded><mspace linebreak="newline"></mspace><mo>&#8658;</mo><mover accent="true"><mi>G</mi><mo>^</mo></mover><mo>=</mo><msup><mn>360</mn><mo>&#8728;</mo></msup><mo>-</mo><mrow><mo>(</mo><mover accent="true"><mi>E</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>F</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>H</mi><mo>^</mo></mover><mo>)</mo></mrow><mspace linebreak="newline"></mspace><mo>&#8658;</mo><mi>x</mi><mo>=</mo><msup><mn>360</mn><mo>&#8728;</mo></msup><mo>-</mo><mrow><mo>(</mo><msup><mn>90</mn><mn>0</mn></msup><mo>+</mo><msup><mn>90</mn><mo>&#8728;</mo></msup><mo>+</mo><msup><mn>90</mn><mo>&#8728;</mo></msup><mo>)</mo></mrow><mo mathvariant="italic">&#8195;</mo><mspace linebreak="newline"></mspace><mo>=</mo><msup><mn>360</mn><mo>&#8728;</mo></msup><mo>-</mo><msup><mn>270</mn><mo>&#8728;</mo></msup><mo>=</mo><msup><mn>90</mn><mo>&#8728;</mo></msup></math><br />c) &Aacute;p dụng định l&iacute; tổng c&aacute;c g&oacute;c của một tứ gi&aacute;c v&agrave;o tứ gi&aacute;c ABDE ta được:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mi>A</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>B</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>D</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>E</mi><mo>^</mo></mover><mo>=</mo><mpadded><msup><mn>360</mn><mn>0</mn></msup></mpadded><mspace linebreak="newline"></mspace><mo>&#8658;</mo><mover accent="true"><mi>D</mi><mo>^</mo></mover><mo>=</mo><msup><mn>360</mn><mn>0</mn></msup><mo>-</mo><mrow><mo>(</mo><mover accent="true"><mi>A</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>B</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>E</mi><mo>^</mo></mover><mo>)</mo></mrow><mspace linebreak="newline"></mspace><mo>&#8658;</mo><mi>x</mi><mo>=</mo><msup><mn>360</mn><mo>&#8728;</mo></msup><mo>-</mo><mrow><mo>(</mo><msup><mn>65</mn><mn>0</mn></msup><mo>+</mo><msup><mn>90</mn><mn>0</mn></msup><mo>+</mo><msup><mn>90</mn><mn>0</mn></msup><mo>)</mo></mrow><mspace linebreak="newline"></mspace><mo>=</mo><msup><mn>360</mn><mo>&#8728;</mo></msup><mo>-</mo><msup><mn>245</mn><mn>0</mn></msup><mo>=</mo><msup><mn>115</mn><mn>0</mn></msup></math><br />d) Ta c&oacute;: <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>I</mi><mo>&#8290;</mo><mi>K</mi><mo>&#8290;</mo><mi>M</mi></mrow><mo>^</mo></mover><mo>+</mo><msup><mn>60</mn><mo>&#8728;</mo></msup><mo>=</mo><msup><mn>180</mn><mo>&#8728;</mo></msup></mstyle></math> (hai g&oacute;c kề b&ugrave;) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mover accent="true"><mrow><mi>I</mi><mo>&#8290;</mo><mi>K</mi><mo>&#8290;</mo><mi>M</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mo>&#8728;</mo></msup><mo>-</mo><msup><mn>60</mn><mo>&#8728;</mo></msup><mo>=</mo><msup><mn>120</mn><mo>&#8728;</mo></msup></mstyle></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>K</mi><mo>&#8290;</mo><mi>M</mi><mo>&#8290;</mo><mi>N</mi></mrow><mo>^</mo></mover><mo>+</mo><msup><mn>105</mn><mn>0</mn></msup><mo>=</mo><msup><mn>180</mn><mo>&#8728;</mo></msup></mstyle></math> (hai g&oacute;c kề b&ugrave;) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mover accent="true"><mrow><mi>K</mi><mo>&#8290;</mo><mi>M</mi><mo>&#8290;</mo><mi>N</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup><mo>-</mo><msup><mn>105</mn><mn>0</mn></msup><mo>=</mo><msup><mn>75</mn><mo>&#8728;</mo></msup></mstyle></math><br />&Aacute;p dụng định l&iacute; tổng c&aacute;c g&oacute;c của một tứ gi&aacute;c v&agrave;o tứ gi&aacute;c MNIK ta được:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>K</mi><mo>&#8290;</mo><mi>M</mi><mo>&#8290;</mo><mi>N</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>M</mi><mo>&#8290;</mo><mi>N</mi><mo>&#8290;</mo><mi>I</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>N</mi><mo>&#8290;</mo><mi>I</mi><mo>&#8290;</mo><mi>K</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>I</mi><mo>&#8290;</mo><mi>K</mi><mo>&#8290;</mo><mi>M</mi></mrow><mo>^</mo></mover><mo>=</mo><mpadded><msup><mn>360</mn><mn>0</mn></msup></mpadded><mspace linebreak="newline"></mspace><mo>&#8658;</mo><mover accent="true"><mrow><mi>M</mi><mo>&#8290;</mo><mi>N</mi><mo>&#8290;</mo><mi>I</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>360</mn><mn>0</mn></msup><mo>-</mo><mrow><mo>(</mo><mover accent="true"><mrow><mi>K</mi><mo>&#8290;</mo><mi>M</mi><mo>&#8290;</mo><mi>N</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>I</mi><mo>&#8290;</mo><mi>K</mi><mo>&#8290;</mo><mi>M</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>N</mi><mo>&#8290;</mo><mi>I</mi><mo>&#8290;</mo><mi>K</mi></mrow><mo>^</mo></mover><mo>)</mo></mrow><mspace linebreak="newline"></mspace><mo>&#8658;</mo><mi>x</mi><mo>=</mo><msup><mn>360</mn><mn>0</mn></msup><mo>-</mo><mrow><mo>(</mo><msup><mn>75</mn><mn>0</mn></msup><mo>+</mo><msup><mn>120</mn><mn>0</mn></msup><mo>+</mo><msup><mn>90</mn><mn>0</mn></msup><mo>)</mo></mrow><mspace linebreak="newline"></mspace><mo>=</mo><msup><mn>360</mn><mn>0</mn></msup><mo>-</mo><msup><mn>285</mn><mn>0</mn></msup><mo>=</mo><msup><mn>75</mn><mn>0</mn></msup></math></p> <div id="top_banner"></div> <p>a) &Aacute;p dụng định l&iacute; tổng c&aacute;c g&oacute;c của một tứ gi&aacute;c v&agrave;o tứ gi&aacute;c $P Q R S$ ta được:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mi>P</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>Q</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>R</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>S</mi><mo>^</mo></mover><mo>=</mo><mpadded><msup><mn>360</mn><mn>0</mn></msup></mpadded><mspace linebreak="newline"/><mo>&#8658;</mo><mover accent="true"><mi>P</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>Q</mi><mo>^</mo></mover><mo>=</mo><msup><mn>360</mn><mn>0</mn></msup><mo>-</mo><mrow><mo>(</mo><mover accent="true"><mi>S</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>R</mi><mo>^</mo></mover><mo>)</mo></mrow><mspace linebreak="newline"/><mo>&#8658;</mo><mi>x</mi><mo>+</mo><mi>x</mi><mo>=</mo><msup><mn>360</mn><mn>0</mn></msup><mo>-</mo><mrow><mo>(</mo><msup><mn>65</mn><mn>0</mn></msup><mo>+</mo><msup><mn>95</mn><mn>0</mn></msup><mo>)</mo></mrow><mspace linebreak="newline"/><mo>&#8658;</mo><mn>2</mn><mo>&#8290;</mo><mi>x</mi><mo>=</mo><msup><mn>360</mn><mn>0</mn></msup><mo>-</mo><mpadded><msup><mn>160</mn><mn>0</mn></msup></mpadded><mspace linebreak="newline"/><mo>&#8658;</mo><mi>x</mi><mo>=</mo><mpadded><mfrac><mrow><msup><mn>360</mn><mn>0</mn></msup><mo>-</mo><msup><mn>160</mn><mn>0</mn></msup></mrow><mn>2</mn></mfrac></mpadded><mspace linebreak="newline"/><mo>&#8658;</mo><mi>x</mi><mo>=</mo><mpadded><mfrac><msup><mn>200</mn><mn>0</mn></msup><mn>2</mn></mfrac></mpadded><mspace linebreak="newline"/><mo>&#8658;</mo><mi>x</mi><mo>=</mo><msup><mn>100</mn><mn>0</mn></msup></math><br />b) &Aacute;p dụng định l&iacute; tổng c&aacute;c g&oacute;c của một tứ gi&aacute;c v&agrave;o tứ gi&aacute;c MNPQ ta được:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8290;</mo><mover accent="true"><mi>M</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>N</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>P</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>Q</mi><mo>^</mo></mover><mo>=</mo><mpadded><msup><mn>360</mn><mn>0</mn></msup></mpadded><mo>&#8290;</mo><mi mathvariant="normal">&#38;</mi><mspace linebreak="newline"/><mo>&#8290;</mo><mn>3</mn><mo>&#8290;</mo><mi>x</mi><mo>+</mo><mn>4</mn><mo>&#8290;</mo><mi>x</mi><mo>+</mo><mi>x</mi><mo>+</mo><mn>2</mn><mo>&#8290;</mo><mi>x</mi><mo>=</mo><mpadded><msup><mn>360</mn><mn>0</mn></msup></mpadded><mo>&#8290;</mo><mspace linebreak="newline"/><mo>&#8290;</mo><mn>10</mn><mo>&#8290;</mo><mi>x</mi><mo>=</mo><mpadded><msup><mn>360</mn><mn>0</mn></msup></mpadded><mo>&#8290;</mo><mi mathvariant="normal">&#38;</mi><mo>&#8290;</mo><mi>x</mi><mo>=</mo><mfrac><msup><mn>360</mn><mn>0</mn></msup><mn>10</mn></mfrac><mo>=</mo><msup><mn>36</mn><mn>0</mn></msup><mo>&#8290;</mo></math></p>
Xem lời giải bài tập khác cùng bài