Hỏi gia sư
Gia sư 1-1
Chuyên đề
Trắc nghiệm
Tài liệu
Cửa hàng
Chọn lớp
Lớp 6
Lớp 7
Lớp 8
Lớp 9
Lớp 10
Lớp 11
Lớp 12
Đăng ký
Đăng nhập
Trang chủ
Hỏi gia sư
Gia sư 1-1
Chuyên đề
Trắc nghiệm
Tài liệu
Cửa hàng
Trang chủ
/
Giải bài tập
/ Lớp 8 / Toán học /
Bài 5: Phép Cộng Các Phân Thức Đại Số
Bài 5: Phép Cộng Các Phân Thức Đại Số
Hướng dẫn Giải Bài 23 (Trang 46, SGK Toán 8, Tập 1)
<p>Làm các phép tính sau:</p> <p>a) <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>y</mi><mrow><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mi>x</mi><mi>y</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>4</mn><mi>x</mi></mrow><mrow><msup><mi>y</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>x</mi><mi>y</mi></mrow></mfrac></math>; b) <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfrac><mo>+</mo><mfrac><mn>3</mn><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>x</mi><mo>-</mo><mn>14</mn></mrow><mrow><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>x</mi><mo>+</mo><mn>4</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfrac></math>;</p> <p>c) <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mn>4</mn><mi>x</mi><mo>+</mo><mn>7</mn></mrow></mfenced></mrow></mfrac></math>; d) <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mn>4</mn><mi>x</mi><mo>+</mo><mn>7</mn></mrow></mfenced></mrow></mfrac><mo>.</mo></math></p> <p><strong>Giải</strong></p> <p>a) <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>y</mi><mrow><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mi>x</mi><mi>y</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>4</mn><mi>x</mi></mrow><mrow><msup><mi>y</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>x</mi><mi>y</mi></mrow></mfrac><mo>=</mo><mfrac><mi>y</mi><mrow><mi>x</mi><mo>(</mo><mn>2</mn><mi>x</mi><mo>-</mo><mi>y</mi><mo>)</mo></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>4</mn><mi>x</mi></mrow><mrow><mi>y</mi><mfenced><mrow><mi>y</mi><mo>-</mo><mn>2</mn><mi>x</mi></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mi>y</mi><mrow><mi>x</mi><mo>(</mo><mn>2</mn><mi>x</mi><mo>-</mo><mi>y</mi><mo>)</mo></mrow></mfrac><mo>+</mo><mfrac><mrow><mo>-</mo><mn>4</mn><mi>x</mi></mrow><mrow><mi>y</mi><mfenced><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mi>y</mi></mrow></mfenced></mrow></mfrac></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><msup><mi>y</mi><mn>2</mn></msup><mrow><mi>x</mi><mi>y</mi><mo>(</mo><mn>2</mn><mi>x</mi><mo>-</mo><mi>y</mi><mo>)</mo></mrow></mfrac><mo>+</mo><mfrac><mrow><mo>-</mo><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup></mrow><mrow><mi>x</mi><mi>y</mi><mo>(</mo><mn>2</mn><mi>x</mi><mo>-</mo><mi>y</mi><mo>)</mo></mrow></mfrac><mo>=</mo><mfrac><mrow><msup><mi>y</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup></mrow><mrow><mi>x</mi><mi>y</mi><mo>(</mo><mn>2</mn><mi>x</mi><mo>-</mo><mi>y</mi><mo>)</mo></mrow></mfrac></math></p> <p>= <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>y</mi><mo>-</mo><mn>2</mn><mi>x</mi></mrow></mfenced><mfenced><mrow><mi>y</mi><mo>+</mo><mn>2</mn><mi>x</mi></mrow></mfenced></mrow><mrow><mi>x</mi><mi>y</mi><mo>(</mo><mn>2</mn><mi>x</mi><mo>-</mo><mi>y</mi><mo>)</mo></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>-</mo><mfenced><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mi>y</mi></mrow></mfenced><mfenced><mrow><mi>y</mi><mo>+</mo><mn>2</mn><mi>x</mi></mrow></mfenced></mrow><mrow><mi>x</mi><mi>y</mi><mo>(</mo><mn>2</mn><mi>x</mi><mo>-</mo><mi>y</mi><mo>)</mo></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>-</mo><mn>2</mn><mi>x</mi><mo>-</mo><mi>y</mi></mrow><mrow><mi>x</mi><mi>y</mi></mrow></mfrac></math></p> <p>b) <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfrac><mo>+</mo><mfrac><mn>3</mn><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>x</mi><mo>-</mo><mn>14</mn></mrow><mrow><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>x</mi><mo>+</mo><mn>4</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfrac><mo>+</mo><mfrac><mn>3</mn><mrow><mfenced><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>x</mi><mo>-</mo><mn>14</mn></mrow><mrow><msup><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfrac></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced></mrow><mrow><msup><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>3</mn><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced></mrow><mrow><msup><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>x</mi><mo>-</mo><mn>14</mn></mrow><mrow><msup><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mn>3</mn><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mi>x</mi><mo>-</mo><mn>14</mn></mrow><mrow><msup><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfrac></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><mo>+</mo><mn>3</mn><mi>x</mi><mo>+</mo><mn>6</mn><mo>+</mo><mi>x</mi><mo>-</mo><mn>14</mn></mrow><mrow><msup><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>x</mi><mo>-</mo><mn>12</mn></mrow><mrow><msup><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfrac><mspace linebreak="newline"/><mo>=</mo><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>6</mn><mi>x</mi><mo>-</mo><mn>12</mn></mrow><mrow><msup><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>x</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mn>6</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow><mrow><msup><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfrac><mspace linebreak="newline"/><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>+</mo><mn>6</mn></mrow></mfenced></mrow><mrow><msup><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>x</mi><mo>+</mo><mn>6</mn></mrow><msup><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup></mfrac></math></p> <p>c) <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mn>4</mn><mi>x</mi><mo>+</mo><mn>7</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mfenced><mrow><mn>4</mn><mi>x</mi><mo>+</mo><mn>7</mn></mrow></mfenced><mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mn>4</mn><mi>x</mi><mo>+</mo><mn>7</mn></mrow></mfenced></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mn>4</mn><mi>x</mi><mo>+</mo><mn>7</mn></mrow></mfenced></mrow></mfrac><mspace linebreak="newline"/><mo>=</mo><mfrac><mrow><mn>4</mn><mi>x</mi><mo>+</mo><mn>7</mn><mo>+</mo><mn>1</mn></mrow><mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mn>4</mn><mi>x</mi><mo>+</mo><mn>7</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>4</mn><mi>x</mi><mo>+</mo><mn>8</mn></mrow><mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mn>4</mn><mi>x</mi><mo>+</mo><mn>7</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>4</mn><mo>(</mo><mi>x</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mn>4</mn><mi>x</mi><mo>+</mo><mn>7</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mn>4</mn><mrow><mn>4</mn><mi>x</mi><mo>+</mo><mn>7</mn></mrow></mfrac></math></p> <p>d) <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mn>4</mn><mi>x</mi><mo>+</mo><mn>7</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow><mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mn>4</mn><mi>x</mi><mo>+</mo><mn>7</mn></mrow></mfenced></mrow></mfrac><mspace linebreak="newline"/><mo>=</mo><mfrac><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow><mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mn>4</mn><mi>x</mi><mo>+</mo><mn>7</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mn>4</mn><mi>x</mi><mo>+</mo><mn>7</mn></mrow></mfenced></mrow></mfrac><mspace linebreak="newline"/><mo>=</mo><mfrac><mrow><mn>4</mn><mi>x</mi><mo>+</mo><mn>7</mn></mrow><mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mn>4</mn><mi>x</mi><mo>+</mo><mn>7</mn></mrow></mfenced></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mn>4</mn><mi>x</mi><mo>+</mo><mn>7</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>4</mn><mi>x</mi><mo>+</mo><mn>8</mn></mrow><mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mn>4</mn><mi>x</mi><mo>+</mo><mn>7</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>4</mn><mo>(</mo><mi>x</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mn>4</mn><mi>x</mi><mo>+</mo><mn>7</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mn>4</mn><mrow><mn>4</mn><mi>x</mi><mo>+</mo><mn>7</mn></mrow></mfrac></math></p>
Xem lời giải bài tập khác cùng bài
Hướng dẫn Giải Bài 21 (Trang 46, SGK Toán 8, Tập 1)
Xem lời giải
Hướng dẫn Giải Bài 22 (Trang 46, SGK Toán 8, Tập 1)
Xem lời giải
Hướng dẫn Giải Bài 24 (Trang 46, SGK Toán 8, Tập 1)
Xem lời giải
Hướng dẫn Giải Bài 25 (Trang 47, SGK Toán 8, Tập 1)
Xem lời giải
Hướng dẫn Giải Bài 26 (Trang 47, SGK Toán 8, Tập 1)
Xem lời giải
Hướng dẫn Giải Bài 27 (Trang 48, SGK Toán 8, Tập 1)
Xem lời giải