Bài 9: Đường trung trực của một đoạn thẳng
Hướng dẫn Giải Bài 2 (Trang 103 SGK Toán 7, Bộ Cánh diều, Tập 2)
<p><strong>B&agrave;i 2 (Trang 103 SGK To&aacute;n 7, Bộ C&aacute;nh diều, Tập 2)</strong></p> <p>Trong H&igrave;nh 95, đường thẳng a l&agrave; đường trung trực của cả hai đoạn thẳng AB v&agrave; CD.</p> <p><img class="wscnph" style="max-width: 100%; display: block; margin-left: auto; margin-right: auto;" src="https://static.colearn.vn:8413/v1.0/upload/library/12102022/bai-2-trand-103-toan-lop-7-tap-2-JhEsBv.png" /></p> <p>a) AB // CD;</p> <p>b) ∆MNC = ∆MND;</p> <p>c) <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>M</mi><mi>D</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>B</mi><mi>M</mi><mi>C</mi></mrow><mo>^</mo></mover><mo>;</mo></math></p> <p>d) AD = BC,&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>A</mi><mo>^</mo></mover></math> =&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>B</mi><mo>^</mo></mover></math></p> <p>e)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>D</mi><mi>C</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>B</mi><mi>C</mi><mi>D</mi></mrow><mo>^</mo></mover><mo>.</mo></math></p> <p>&nbsp;</p> <p><em><span style="text-decoration: underline;"><strong>Hướng dẫn giải</strong></span></em></p> <p>a) Do a l&agrave; đường trung trực của cả hai đoạn thẳng AB v&agrave; CD n&ecirc;n a &perp; AB v&agrave; a &perp; CD.</p> <p>Do đ&oacute; AB // CD.</p> <p>&nbsp;</p> <p>b) X&eacute;t ∆MNC vu&ocirc;ng tại N v&agrave; ∆MND vu&ocirc;ng tại N c&oacute;:</p> <p>MN chung.</p> <p>NC = ND (theo giả thiết).</p> <p>Do đ&oacute; ∆MNC = ∆MND (2 cạnh g&oacute;c vu&ocirc;ng).</p> <p>&nbsp;</p> <p>c) Do ∆MNC = ∆MND (2 cạnh g&oacute;c vu&ocirc;ng) n&ecirc;n&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>M</mi><mi>C</mi><mi>N</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>M</mi><mi>D</mi><mi>N</mi></mrow><mo>^</mo></mover></math>&nbsp;(2 g&oacute;c tương ứng).</p> <p>Do AM // DN <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>M</mi><mi>D</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>M</mi><mi>D</mi><mi>N</mi></mrow><mo>^</mo></mover><mo>&#160;</mo></math>(2 g&oacute;c so le trong)</p> <p>Do &nbsp;BM // CN n&ecirc;n <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>M</mi><mi>C</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>M</mi><mi>C</mi><mi>N</mi></mrow><mo>^</mo></mover></math> (2 g&oacute;c so le trong)</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mover><mrow><mi>A</mi><mi>M</mi><mi>D</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>B</mi><mi>M</mi><mi>C</mi></mrow><mo>^</mo></mover></math></p> <p>&nbsp;</p> <p>d)&nbsp;Do ∆MNC = ∆MND (2 cạnh g&oacute;c vu&ocirc;ng) n&ecirc;n MC = MD (2 cạnh tương ứng).</p> <p>X&eacute;t ∆AMD v&agrave; ∆BMC c&oacute;:</p> <p>AM = BM (theo giả thiết).</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>M</mi><mi>D</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>B</mi><mi>M</mi><mi>C</mi></mrow><mo>^</mo></mover></math></p> <p>MD = MC (chứng minh tr&ecirc;n).</p> <p>Do đ&oacute; ∆AMD = ∆BMC (c - g - c).</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo></math> AD = BC (2 cạnh tương ứng) v&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>M</mi><mi>A</mi><mi>D</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>M</mi><mi>B</mi><mi>C</mi></mrow><mo>^</mo></mover><mo>&#160;</mo></math>(2 g&oacute;c tương ứng)</p> <p>&nbsp;</p> <p>e) Do ∆AMD = ∆BMC (c - g - c)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>D</mi><mi>M</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>B</mi><mi>C</mi><mi>M</mi></mrow><mo>^</mo></mover><mo>&#160;</mo></math> (2 g&oacute;c tương ứng)</p> <p>M&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>M</mi><mi>D</mi><mi>N</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>M</mi><mi>C</mi><mi>N</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>&#8658;</mo><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>D</mi><mi>M</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mover><mrow><mi>M</mi><mi>D</mi><mi>N</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>B</mi><mi>C</mi><mi>M</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mo>&#160;</mo><mover><mrow><mi>M</mi><mi>C</mi><mi>N</mi></mrow><mo>^</mo></mover></math></p> <p>Hay&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>D</mi><mi>C</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>B</mi><mi>C</mi><mi>D</mi></mrow><mo>^</mo></mover></math></p> <p>&nbsp;</p> <p>&nbsp;</p> <p>&nbsp;</p>
Xem lời giải bài tập khác cùng bài