Bài 4: Hàm số mũ. Hàm số lôgarit
Lý thuyết Hàm số mũ. Hàm số Lôgarit
<p><strong>1. Hàm số mũ</strong></p>
<p><strong>a) Hàm số mũ là gì?</strong></p>
<p>Định nghĩa: Cho số thực dương a khác 1. Hàm số y = a<sup>x</sup> được gọi là hàm số mũ của cơ số a.</p>
<p><strong>b) Đạo hàm của hàm số mũ</strong></p>
<p>Công thức được thừa nhận: <math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi>t</mi><mo>→</mo><mn>0</mn></mrow></munder><mfrac><mrow><msup><mi>e</mi><mi>t</mi></msup><mo> </mo><mo>-</mo><mo> </mo><mn>1</mn></mrow><mi>t</mi></mfrac><mo> </mo><mo>=</mo><mo> </mo><mn>1</mn></math> (1)</p>
<p><span style="text-decoration: underline;"><strong>Định lí 1</strong>:</span> <strong><em>Hàm số y = e<sup>x</sup> có đạo hàm tại mọi x và <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo mathvariant="bold-italic">(</mo><msup><mi mathvariant="bold-italic">e</mi><mi mathvariant="bold-italic">x</mi></msup><mo mathvariant="bold-italic">)</mo></mrow><mo mathvariant="bold-italic">'</mo><mo mathvariant="bold-italic"> </mo><mo mathvariant="bold-italic">=</mo><mo mathvariant="bold-italic"> </mo><msup><mi mathvariant="bold-italic">e</mi><mi mathvariant="bold">x</mi></msup></math>.</em></strong></p>
<p>Ví dụ: Giả sử <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><mi>x</mi><mo> </mo><mi>là</mi><mo> </mo><mi>số</mi><mo> </mo><mi>gia</mi><mo> </mo><mi>của</mi><mo> </mo><mi mathvariant="normal">x</mi><mo>,</mo><mo> </mo><mi>ta</mi><mo> </mo><mi>có</mi><mo>:</mo><mo> </mo><mo>∆</mo><mi>y</mi><mo> </mo><mo>=</mo><mo> </mo><msup><mi>e</mi><mrow><mi>x</mi><mo>+</mo><mo>∆</mo><mi>x</mi></mrow></msup><mo> </mo><mo>-</mo><mo> </mo><msup><mi>e</mi><mi>x</mi></msup><mo> </mo><mo>=</mo><mo> </mo><msup><mi>e</mi><mi>x</mi></msup><mfenced><mrow><msup><mi>e</mi><mrow><mo>∆</mo><mi>x</mi></mrow></msup><mo>-</mo><mn>1</mn></mrow></mfenced></math></p>
<p>Do vậy: <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>∆</mo><mi>y</mi></mrow><mrow><mo>∆</mo><mi>x</mi></mrow></mfrac><mo> </mo><mo>=</mo><mo> </mo><msup><mi>e</mi><mi>x</mi></msup><mfrac><mrow><msup><mi>e</mi><mrow><mo>∆</mo><mi>x</mi></mrow></msup><mo>-</mo><mn>1</mn></mrow><mrow><mo>∆</mo><mi>x</mi></mrow></mfrac></math></p>
<p>Áp dụng công thức (1), ta có: <math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mo>∆</mo><mi>x</mi><mo>→</mo><mn>0</mn></mrow></munder><mfrac><mrow><msup><mi>e</mi><mrow><mo>∆</mo><mi>x</mi></mrow></msup><mo>-</mo><mn>1</mn></mrow><mrow><mo>∆</mo><mi>x</mi></mrow></mfrac><mo> </mo><mo>=</mo><mo> </mo><mn>1</mn></math></p>
<p>Từ đó suy ra: <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>'</mo><mo> </mo><mo>=</mo><mo> </mo><munder><mi>lim</mi><mrow><mo>∆</mo><mi>x</mi><mo>→</mo><mn>0</mn></mrow></munder><mfrac><mrow><mo>∆</mo><mi>y</mi></mrow><mrow><mo>∆</mo><mi>x</mi></mrow></mfrac><mo> </mo><mo>=</mo><mo> </mo><msup><mi>e</mi><mi>x</mi></msup></math></p>
<p>Lưu ý: Công thức đạo hàm của hàm số hợp đối với hàm số e<sup>u</sup> (u = u(x)) là (e<sup>u</sup>)' = u'.e<sup>u</sup>.</p>
<p><strong>ĐỊNH LÍ 2: Hàm số <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">y</mi><mo mathvariant="bold"> </mo><mo mathvariant="bold">=</mo><mo mathvariant="bold"> </mo><msup><mi mathvariant="bold-italic">a</mi><mi mathvariant="bold">x</mi></msup><mo mathvariant="bold"> </mo><mo mathvariant="bold">(</mo><mi mathvariant="bold-italic">a</mi><mo mathvariant="bold"> </mo><mo mathvariant="bold">></mo><mo mathvariant="bold"> </mo><mn mathvariant="bold">0</mn><mo mathvariant="bold">,</mo><mo mathvariant="bold"> </mo><mi mathvariant="bold-italic">a</mi><mo mathvariant="bold">≠</mo><mn mathvariant="bold">1</mn><mo mathvariant="bold">)</mo><mo mathvariant="bold"> </mo><mi mathvariant="bold-italic">c</mi><mi mathvariant="bold-italic">ó</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold-italic">đ</mi><mi mathvariant="bold-italic">ạ</mi><mi mathvariant="bold-italic">o</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold-italic">h</mi><mi mathvariant="bold-italic">à</mi><mi mathvariant="bold-italic">m</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold-italic">t</mi><mi mathvariant="bold-italic">ạ</mi><mi mathvariant="bold-italic">i</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold-italic">m</mi><mi mathvariant="bold-italic">ọ</mi><mi mathvariant="bold-italic">i</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold">x</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold-italic">v</mi><mi mathvariant="bold-italic">à</mi><mo mathvariant="bold"> </mo><mstyle mathvariant="bold"><mrow><mo>(</mo><msup><mi>a</mi><mi>x</mi></msup><mo>)</mo></mrow></mstyle><mo mathvariant="bold">=</mo><mo mathvariant="bold"> </mo><msup><mi mathvariant="bold-italic">a</mi><mi mathvariant="bold">x</mi></msup><mi mathvariant="bold-italic">l</mi><mi mathvariant="bold-italic">n</mi><mi mathvariant="bold-italic">a</mi></math></strong></p>
<p>Ví dụ: Ta có <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>a</mi><mi mathvariant="italic">x</mi></msup><mo mathvariant="italic"> </mo><mo mathvariant="italic">=</mo><mo mathvariant="italic"> </mo><msup><mi>e</mi><mrow><mi mathvariant="italic">l</mi><mi mathvariant="italic">n</mi><msup><mi mathvariant="italic">a</mi><mi mathvariant="italic">x</mi></msup></mrow></msup><mo mathvariant="italic"> </mo><mo mathvariant="italic">=</mo><mo mathvariant="italic"> </mo><msup><mi>e</mi><mrow><mi mathvariant="italic">x</mi><mo mathvariant="italic">.</mo><mi mathvariant="italic">l</mi><mi mathvariant="italic">n</mi><mi mathvariant="italic">a</mi></mrow></msup></math></p>
<p>Đặt u(x) = x.lna, theo Lưu ý trên, ta được: <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><msup><mi>a</mi><mi>x</mi></msup></mfenced><mo>'</mo><mo> </mo><mo>=</mo><mo> </mo><mfenced><msup><mi>e</mi><mrow><mi>x</mi><mi>ln</mi><mi>a</mi></mrow></msup></mfenced><mo>'</mo><mo> </mo><mo>=</mo><mo> </mo><msup><mi>e</mi><mrow><mi>x</mi><mi>ln</mi><mi>a</mi></mrow></msup><mfenced><mrow><mi>x</mi><mi>ln</mi><mi>a</mi></mrow></mfenced><mo>'</mo><mo> </mo><mo>=</mo><mo> </mo><msup><mi>a</mi><mi>x</mi></msup><mi>ln</mi><mi>a</mi></math></p>
<p>LƯU Ý: Với hàm hợp y = a<sup>u(x)</sup> ta có: (a<sup>u</sup>)' = a<sup>u</sup>lna.u'</p>
<p><strong>c) Khảo sát hàm số mũ <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">y</mi><mo mathvariant="bold"> </mo><mo mathvariant="bold">=</mo><mo mathvariant="bold"> </mo><msup><mi mathvariant="bold-italic">a</mi><mi mathvariant="bold">x</mi></msup><mo mathvariant="bold"> </mo><mo mathvariant="bold">(</mo><mi mathvariant="bold-italic">a</mi><mo mathvariant="bold">></mo><mn mathvariant="bold">0</mn><mo mathvariant="bold">,</mo><mo mathvariant="bold"> </mo><mi mathvariant="bold-italic">a</mi><mo mathvariant="bold">≠</mo><mn mathvariant="bold">1</mn><mo mathvariant="bold">)</mo></math></strong></p>
<table style="border-collapse: collapse; width: 80.0636%; height: 752px;" border="1">
<tbody>
<tr>
<td style="width: 29.9363%;"> </td>
<td style="width: 36.1996%; text-align: center;"><strong>y = a<sup>x</sup> (a > 1)</strong></td>
<td style="width: 33.8641%; text-align: center;"><strong>y = a<sup>x</sup> (0 < a < 1)</strong></td>
</tr>
<tr>
<td style="width: 29.9363%;">1. Tập xác định</td>
<td style="width: 36.1996%; text-align: center;">R</td>
<td style="width: 33.8641%; text-align: center;">R</td>
</tr>
<tr>
<td style="width: 29.9363%;">2. Sự biến thiên</td>
<td style="width: 36.1996%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>'</mo><mo> </mo><mo>=</mo><mo> </mo><msup><mi>a</mi><mi>x</mi></msup><mi>ln</mi><mo> </mo><mi>a</mi><mo> </mo><mo>></mo><mo> </mo><mn>0</mn><mo>,</mo><mo> </mo><mo>∀</mo><mi>x</mi></math></td>
<td style="width: 33.8641%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>'</mo><mo> </mo><mo>=</mo><mo> </mo><msup><mi>a</mi><mi>x</mi></msup><mi>ln</mi><mo> </mo><mi>a</mi><mo> </mo><mo><</mo><mo> </mo><mn>0</mn><mo> </mo><mo>,</mo><mo> </mo><mo>∀</mo><mi>x</mi></math></td>
</tr>
<tr>
<td style="width: 29.9363%;">Giới hạn đặc biệt</td>
<td style="width: 36.1996%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mrow><mi>li</mi><mi>m</mi></mrow><mrow><mi>x</mi><mo>→</mo><mo>-</mo><mo>∞</mo></mrow></munder><msup><mi>a</mi><mi>x</mi></msup><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><munder><mi>lim</mi><mrow><mi>x</mi><mo>→</mo><mo>+</mo><mo>∞</mo></mrow></munder><msup><mi>a</mi><mi>x</mi></msup><mo> </mo><mo>=</mo><mo> </mo><mo>+</mo><mo>∞</mo></math></td>
<td style="width: 33.8641%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mrow><mi>li</mi><mi>m</mi></mrow><mrow><mi>x</mi><mo>→</mo><mo>-</mo><mo>∞</mo></mrow></munder><msup><mi>a</mi><mi>x</mi></msup><mo>=</mo><mo>+</mo><mo>∞</mo><mo>,</mo><mo> </mo><munder><mi>lim</mi><mrow><mi>x</mi><mo>→</mo><mo>+</mo><mo>∞</mo></mrow></munder><msup><mi>a</mi><mi>x</mi></msup><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn></math></td>
</tr>
<tr>
<td style="width: 29.9363%;">Tiệm cận</td>
<td style="width: 36.1996%; text-align: center;">Trục Ox là tiệm cận ngang</td>
<td style="width: 33.8641%; text-align: center;">Trục Ox là tiệm cận ngang</td>
</tr>
<tr>
<td style="width: 29.9363%;">3. Bảng biến thiên</td>
<td style="width: 36.1996%; text-align: center;"><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/23112022/band-bien-thien-trand-73-sdk-diai-tich-12-tap-1-1-1lROfp.jpg" /></td>
<td style="width: 33.8641%; text-align: center;"><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/23112022/band-bien-thien-trand-73-sdk-diai-tich-12-tap-1-2-dOLbF7.jpg" /></td>
</tr>
<tr>
<td style="width: 29.9363%;">4. Đồ thị</td>
<td style="width: 36.1996%; text-align: center;"><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/23112022/hinh-31-trand-73-sdk-diai-tich-12-tap-1-ed7Wsp.jpg" /></td>
<td style="width: 33.8641%; text-align: center;"><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/23112022/hinh-32-trand-73-sdk-diai-tich-12-tap-1-DWgFLB.jpg" /></td>
</tr>
</tbody>
</table>
<p>2. Hàm số Lôgarit</p>
<p><strong>a) Hàm số lôgarit là gì?</strong></p>
<p>Định nghĩa: Cho số thực dương a khác 1, hàm số <strong>y = log<sub>a</sub>x</strong> được gọi là hàm số lôgarit cơ số a.</p>
<p>Một số ví dụ: <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo> </mo><mo>=</mo><mo> </mo><msub><mi>log</mi><mn>3</mn></msub><mi>x</mi><mo>,</mo><mo> </mo><mi>y</mi><mo> </mo><mo>=</mo><mo> </mo><msub><mi>log</mi><mfrac><mn>1</mn><mn>4</mn></mfrac></msub><mi>x</mi><mo>,</mo><mo> </mo><mi>y</mi><mo> </mo><mo>=</mo><mo> </mo><msub><mi>log</mi><msqrt><mn>3</mn></msqrt></msub><mi>x</mi><mo>,</mo><mo> </mo><mi>y</mi><mo> </mo><mo>=</mo><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>,</mo><mo> </mo><mi>y</mi><mo> </mo><mo>=</mo><mo> </mo><mi>log</mi><mo> </mo><mi>x</mi></math></p>
<p><strong>b) Đạo hàm của hàm số lôgarit</strong></p>
<p><strong>ĐỊNH LÍ 3: Hàm số <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">y</mi><mo mathvariant="bold"> </mo><mo mathvariant="bold">=</mo><mo mathvariant="bold"> </mo><mi mathvariant="bold-italic">l</mi><mi mathvariant="bold-italic">o</mi><msub><mi mathvariant="bold-italic">g</mi><mi mathvariant="bold">a</mi></msub><mi mathvariant="bold-italic">x</mi><mo mathvariant="bold"> </mo><mo mathvariant="bold">(</mo><mi mathvariant="bold-italic">a</mi><mo mathvariant="bold">></mo><mn mathvariant="bold">0</mn><mo mathvariant="bold">,</mo><mo mathvariant="bold"> </mo><mi mathvariant="bold-italic">a</mi><mo mathvariant="bold">≠</mo><mn mathvariant="bold">1</mn><mo mathvariant="bold">)</mo><mo mathvariant="bold"> </mo><mi mathvariant="bold-italic">c</mi><mi mathvariant="bold-italic">ó</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold-italic">đ</mi><mi mathvariant="bold-italic">ạ</mi><mi mathvariant="bold-italic">o</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold-italic">h</mi><mi mathvariant="bold-italic">à</mi><mi mathvariant="bold-italic">m</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold-italic">t</mi><mi mathvariant="bold-italic">ạ</mi><mi mathvariant="bold-italic">i</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold-italic">m</mi><mi mathvariant="bold-italic">ọ</mi><mi mathvariant="bold-italic">i</mi><mo mathvariant="bold"> </mo><mi mathvariant="bold-italic">x</mi><mo mathvariant="bold"> </mo><mo mathvariant="bold">></mo><mo mathvariant="bold"> </mo><mn mathvariant="bold">0</mn><mo mathvariant="bold"> </mo><mi mathvariant="bold-italic">v</mi><mi mathvariant="bold-italic">à</mi><mo mathvariant="bold"> </mo><mstyle mathvariant="bold"><mrow><mo>(</mo><mi>l</mi><mi>o</mi><msub><mi>g</mi><mi>a</mi></msub><mi>x</mi><mo>)</mo></mrow></mstyle><mo mathvariant="bold">'</mo><mo mathvariant="bold"> </mo><mo mathvariant="bold">=</mo><mo mathvariant="bold"> </mo><mfrac><mn mathvariant="bold">1</mn><mrow><mi mathvariant="bold">x</mi><mi mathvariant="bold">l</mi><mi mathvariant="bold">n</mi><mi mathvariant="bold">a</mi></mrow></mfrac></math></strong></p>
<p><strong>Đặc biệt: <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>ln</mi><mi>x</mi></mrow></mfenced><mo>'</mo><mo> </mo><mo>=</mo><mo> </mo><mfrac><mn>1</mn><mi>x</mi></mfrac></math></strong></p>
<p>Lưu ý: Với hàm hợp y = log<sub>a</sub>u(x), ta có: <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msub><mi>log</mi><mi>a</mi></msub><mi>u</mi></mrow></mfenced><mo>'</mo><mo> </mo><mo>=</mo><mo> </mo><mfrac><mrow><mi>u</mi><mo>'</mo></mrow><mrow><mi>u</mi><mi>ln</mi><mi>a</mi></mrow></mfrac></math></p>
<p><strong>c) Khảo sát hàm số lôgarit <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">y</mi><mo mathvariant="bold"> </mo><mo mathvariant="bold">=</mo><mo mathvariant="bold"> </mo><mi mathvariant="bold-italic">l</mi><mi mathvariant="bold-italic">o</mi><msub><mi mathvariant="bold-italic">g</mi><mi mathvariant="bold">a</mi></msub><mi mathvariant="bold-italic">x</mi><mo mathvariant="bold"> </mo><mo mathvariant="bold">(</mo><mi mathvariant="bold-italic">a</mi><mo mathvariant="bold">></mo><mn mathvariant="bold">0</mn><mo mathvariant="bold">,</mo><mo mathvariant="bold"> </mo><mi mathvariant="bold-italic">a</mi><mo mathvariant="bold">≠</mo><mn mathvariant="bold">1</mn><mo mathvariant="bold">)</mo></math></strong></p>
<table style="border-collapse: collapse; width: 79.2153%; height: 683px;" border="1">
<tbody>
<tr>
<td style="width: 29.9363%;"> </td>
<td style="width: 36.1996%; text-align: center;"><strong>y = log<sub>a</sub>x (a > 1)</strong></td>
<td style="width: 33.8641%; text-align: center;"><strong>y = log<sub>a</sub>x (0 < a < 1)</strong></td>
</tr>
<tr>
<td style="width: 29.9363%;">1. Tập xác định</td>
<td style="width: 36.1996%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>;</mo><mo>+</mo><mo>∞</mo></mrow></mfenced></math></td>
<td style="width: 33.8641%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>;</mo><mo>+</mo><mo>∞</mo></mrow></mfenced></math></td>
</tr>
<tr>
<td style="width: 29.9363%;">2. Sự biến thiên</td>
<td style="width: 36.1996%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>'</mo><mo> </mo><mo>=</mo><mo> </mo><mfrac><mn>1</mn><mrow><mi>x</mi><mi>ln</mi><mi>a</mi></mrow></mfrac><mo> </mo><mo>></mo><mo> </mo><mn>0</mn><mo>,</mo><mo> </mo><mo>∀</mo><mo> </mo><mi>x</mi><mo> </mo><mo>></mo><mo> </mo><mn>0</mn></math></td>
<td style="width: 33.8641%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>'</mo><mo> </mo><mo>=</mo><mo> </mo><mfrac><mn>1</mn><mrow><mi>x</mi><mi>ln</mi><mi>a</mi></mrow></mfrac><mo> </mo><mo><</mo><mo> </mo><mn>0</mn><mo>,</mo><mo> </mo><mo>∀</mo><mo> </mo><mi>x</mi><mo> </mo><mo>></mo><mo> </mo><mn>0</mn></math></td>
</tr>
<tr>
<td style="width: 29.9363%;">Giới hạn đặc biệt</td>
<td style="width: 36.1996%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mrow><mi>li</mi><mi>m</mi></mrow><mrow><mi>x</mi><mo>→</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></munder><msub><mi>log</mi><mi>a</mi></msub><mi>x</mi><mo>=</mo><mo>-</mo><mo>∞</mo><mo>,</mo><mo> </mo><munder><mi>lim</mi><mrow><mi>x</mi><mo>→</mo><mo>+</mo><mo>∞</mo></mrow></munder><msub><mi>log</mi><mi>a</mi></msub><mi>x</mi><mo> </mo><mo>=</mo><mo> </mo><mo>+</mo><mo>∞</mo></math></td>
<td style="width: 33.8641%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mrow><mi>li</mi><mi>m</mi></mrow><mrow><mi>x</mi><mo>→</mo><msup><mn>0</mn><mo>+</mo></msup></mrow></munder><msub><mi>log</mi><mi>a</mi></msub><mi>x</mi><mo>=</mo><mo>+</mo><mo>∞</mo><mo>,</mo><mo> </mo><munder><mi>lim</mi><mrow><mi>x</mi><mo>→</mo><mo>+</mo><mo>∞</mo></mrow></munder><msub><mi>log</mi><mi>a</mi></msub><mi>x</mi><mo> </mo><mo>=</mo><mo> </mo><mo>-</mo><mo>∞</mo></math></td>
</tr>
<tr>
<td style="width: 29.9363%;">Tiệm cận</td>
<td style="width: 36.1996%; text-align: center;">Trục Oy là tiệm cận đứng</td>
<td style="width: 33.8641%; text-align: center;">Trục Oy là tiệm cận đứng</td>
</tr>
<tr>
<td style="width: 29.9363%;">3. Bảng biến thiên</td>
<td style="width: 36.1996%; text-align: center;"><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/23112022/band-bien-thien-trand-75-sdk-diai-tich-12-tap-1-1-rIJUzS.jpg" /></td>
<td style="width: 33.8641%; text-align: center;"><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/23112022/band-bien-thien-trand-75-sdk-diai-tich-12-tap-1-2-XtnkSP.jpg" /></td>
</tr>
<tr>
<td style="width: 29.9363%;">4. Đồ thị</td>
<td style="width: 36.1996%; text-align: center;"><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/23112022/hinh-33-trand-76-sdk-diai-tich-12-tap-1-FMXoPJ.jpg" /></td>
<td style="width: 33.8641%; text-align: center;"><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/23112022/hinh-34-trand-76-sdk-diai-tich-12-tap-1-XHLroI.jpg" /></td>
</tr>
</tbody>
</table>
Xem lời giải bài tập khác cùng bài