Bài 3: Ứng dụng của tích phân trong hình học
Hướng dẫn giải Bài 1 (Trang 121 SGK Toán Giải tích 12)
<p><strong>B&agrave;i 1 (Trang 121 SGK To&aacute;n Giải t&iacute;ch 12):</strong></p> <p>T&iacute;nh diện t&iacute;ch h&igrave;nh phẳng giới hạn bởi c&aacute;c đường:</p> <p>a)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo>,</mo><mo>&#160;</mo><mi>y</mi><mo>=</mo><mi>x</mi><mo>+</mo><mn>2</mn></math>;</p> <p>b) <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfenced open="|" close="|"><mrow><mi>ln</mi><mi>x</mi></mrow></mfenced><mo>,</mo><mo>&#160;</mo><mi>y</mi><mo>=</mo><mn>1</mn></math>;</p> <p>c) <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msup><mrow><mo>(</mo><mi>x</mi><mo>-</mo><mn>6</mn><mo>)</mo></mrow><mn>2</mn></msup><mo>,</mo><mo>&#160;</mo><mi>y</mi><mo>=</mo><mn>6</mn><mi>x</mi><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></math>.</p> <p><strong><em>Hướng dẫn giải:</em></strong></p> <p>a) Phương tr&igrave;nh ho&agrave;nh độ giao điểm của hai đường cong l&agrave;:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><mi>x</mi><mo>+</mo><mn>2</mn><mo>&#160;</mo><mo>&#8660;</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mi>x</mi><mo>-</mo><mn>2</mn><mo>=</mo><mn>0</mn><mo>&#8660;</mo><mo>&#160;</mo><msubsup><mo>[</mo><mrow><mi>x</mi><mo>=</mo><mn>2</mn></mrow><mrow><mi>x</mi><mo>=</mo><mo>-</mo><mn>1</mn></mrow></msubsup></math></p> <p>Diện t&iacute;ch h&igrave;nh phẳng đ&atilde; cho l&agrave;</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">S</mi><mo>=</mo><msubsup><mo>&#8747;</mo><mrow><mo>-</mo><mn>1</mn></mrow><mn>2</mn></msubsup><mfenced open="|" close="|"><mrow><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>-</mo><mi mathvariant="normal">x</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mi>dx</mi><mo>=</mo><mfenced open="|" close="|"><mrow><msubsup><mo>&#8747;</mo><mrow><mo>-</mo><mn>1</mn></mrow><mn>2</mn></msubsup><mo>(</mo><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>-</mo><mi mathvariant="normal">x</mi><mo>-</mo><mn>2</mn><mo>)</mo><mi>dx</mi></mrow></mfenced><mo>=</mo><msubsup><mfenced open="|" close="|"><mrow><mo>(</mo><mfrac><msup><mi mathvariant="normal">x</mi><mn>3</mn></msup><mn>3</mn></mfrac><mo>-</mo><mfrac><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mn>2</mn></mfrac><mo>-</mo><mn>2</mn><mi mathvariant="normal">x</mi><mo>)</mo></mrow></mfenced><mrow><mo>-</mo><mn>1</mn></mrow><mn>2</mn></msubsup><mo>=</mo><mfrac><mn>9</mn><mn>2</mn></mfrac></math> (đvdt)</p> <p>b) Phương tr&igrave;nh ho&agrave;nh độ giao điểm của hai đường cong l&agrave;</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mrow><mi>ln</mi><mo>&#160;</mo><mi mathvariant="normal">x</mi></mrow></mfenced><mo>=</mo><mn>1</mn><mo>&#8660;</mo><mo>[</mo><mtable columnalign="left"><mtr><mtd><mi>ln</mi><mo>&#160;</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>1</mn></mtd></mtr><mtr><mtd><mi>ln</mi><mo>&#160;</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mn>1</mn></mtd></mtr></mtable><mo>&#160;</mo><mo>&#8660;</mo><mo>[</mo><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi mathvariant="normal">e</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>1</mn><mi mathvariant="normal">e</mi></mfrac></mtd></mtr></mtable></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">S</mi><mo>=</mo><msubsup><mo>&#8747;</mo><mfrac><mn>1</mn><mi mathvariant="normal">e</mi></mfrac><mi mathvariant="normal">e</mi></msubsup><mfenced open="|" close="|"><mrow><mn>1</mn><mo>-</mo><mfenced open="|" close="|"><mi>lnx</mi></mfenced></mrow></mfenced><mi>dx</mi><mo>=</mo><msubsup><mo>&#8747;</mo><mfrac><mn>1</mn><mi mathvariant="normal">e</mi></mfrac><mn>1</mn></msubsup><mo>(</mo><mn>1</mn><mo>+</mo><mi>lnx</mi><mo>)</mo><mi>dx</mi><mo>+</mo><msubsup><mo>&#8747;</mo><mn>1</mn><mi mathvariant="normal">e</mi></msubsup><mo>(</mo><mn>1</mn><mo>-</mo><mi>lnx</mi><mo>)</mo><mi>dx</mi></math></p> <p>T&iacute;nh <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8747;</mo><mi>lnxdx</mi></math></p> <p>Đặt&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mrow><mtable columnalign="left"><mtr><mtd><mi>u</mi><mo>=</mo><mi>ln</mi><mi>x</mi></mtd></mtr><mtr><mtd><mi>d</mi><mi>v</mi><mo>=</mo><mi>d</mi><mi>x</mi></mtd></mtr></mtable><mo>&#8658;</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>d</mi><mi>u</mi><mo>=</mo><mfrac><mrow><mi>d</mi><mi>x</mi></mrow><mi>x</mi></mfrac></mtd></mtr><mtr><mtd><mi>v</mi><mo>=</mo><mi>x</mi></mtd></mtr></mtable></mfenced></mrow></mfenced></math></p> <p>Suy ra&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8747;</mo><mi>ln</mi><mi>x</mi><mi>d</mi><mi>x</mi><mo>=</mo><mi>x</mi><mi>ln</mi><mi>x</mi><mo>-</mo><mo>&#8747;</mo><mi>d</mi><mi>x</mi><mo>&#160;</mo><mo>=</mo><mi>x</mi><mi>ln</mi><mi>x</mi><mo>-</mo><mi>x</mi><mo>+</mo><mi>C</mi></math></p> <p>Vậy một nguy&ecirc;n h&agrave;m của y = lnx l&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>x</mi><mi>ln</mi><mi>x</mi><mo>-</mo><mi>x</mi></math></p> <p>Do đ&oacute;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo>=</mo><mi>x</mi><mi>ln</mi><mi>x</mi><msubsup><mo>|</mo><mfrac><mn>1</mn><mi>e</mi></mfrac><mn>1</mn></msubsup><mo>&#160;</mo><mo>+</mo><mo>(</mo><mn>2</mn><mi>x</mi><mo>-</mo><mi>x</mi><mi>ln</mi><mi>x</mi><mo>)</mo><msubsup><mo>|</mo><mn>1</mn><mi>e</mi></msubsup><mo>=</mo><mfrac><mn>1</mn><mi>e</mi></mfrac><mo>+</mo><mn>2</mn><mi>e</mi><mo>-</mo><mi>e</mi><mo>-</mo><mn>2</mn><mo>=</mo><mfrac><mn>1</mn><mi>e</mi></mfrac><mo>+</mo><mi>e</mi><mo>-</mo><mn>2</mn></math> (đvdt)</p> <p>c) Phương tr&igrave;nh ho&agrave;nh độ giao điểm của hai đường cong l&agrave;:</p> <p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mrow><mo>(</mo><mi>x</mi><mo>-</mo><mn>6</mn><mo>)</mo></mrow><mn>2</mn></msup><mo>=</mo><mn>6</mn><mi>x</mi><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup><mo>&#8660;</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>9</mn><mi>x</mi><mo>+</mo><mn>18</mn><mo>=</mo><mn>0</mn><mo>&#8660;</mo><msubsup><mo>[</mo><mrow><mi>x</mi><mo>=</mo><mn>6</mn></mrow><mrow><mi>x</mi><mo>=</mo><mn>3</mn></mrow></msubsup></math></p> <p>Vậy&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">S</mi><mo>=</mo><msubsup><mo>&#8747;</mo><mn>3</mn><mn>6</mn></msubsup><mfenced open="|" close="|"><mrow><msup><mrow><mo>(</mo><mi mathvariant="normal">x</mi><mo>-</mo><mn>6</mn><mo>)</mo></mrow><mn>2</mn></msup><mo>-</mo><mo>(</mo><mn>6</mn><mi mathvariant="normal">x</mi><mo>-</mo><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>)</mo></mrow></mfenced><mi>dx</mi><mo>=</mo><mfenced open="|" close="|"><mrow><msubsup><mo>&#8747;</mo><mn>3</mn><mn>6</mn></msubsup><mn>2</mn><mo>(</mo><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>-</mo><mn>9</mn><mi mathvariant="normal">x</mi><mo>+</mo><mn>18</mn><mo>)</mo><mi>dx</mi></mrow></mfenced><mo>=</mo><mn>9</mn></math> (đvdt).</p>
Xem lời giải bài tập khác cùng bài