Bài 3: Ứng dụng của tích phân trong hình học
Hướng dẫn giải Bài 3 (Trang 121 SGK Toán Giải tích 12)
<p><strong>B&agrave;i 3 (Trang 121 SGK To&aacute;n Giải t&iacute;ch 12):</strong></p> <p>Parapol&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><msup><mi>x</mi><mn>2</mn></msup><mn>2</mn></mfrac></math> chia h&igrave;nh tr&ograve;n c&oacute; t&acirc;m tại gốc tọa độ, b&aacute;n k&iacute;nh&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msqrt><mn>2</mn></msqrt></math> th&agrave;nh hai phần. T&igrave;m tỉ số diện t&iacute;ch của ch&uacute;ng.</p> <p><strong><em>Hướng dẫn giải:</em></strong></p> <p>Phương tr&igrave;nh đường tr&ograve;n t&acirc;m O b&aacute;n k&iacute;nh&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msqrt><mn>2</mn></msqrt></math> l&agrave;: (C):&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mn>8</mn></math>. Tung độ giao điểm của (C) v&agrave; (P) l&agrave;:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="normal">y</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi mathvariant="normal">y</mi><mo>-</mo><mn>8</mn><mo>=</mo><mn>0</mn><mo>&#160;</mo><mo>&#8660;</mo><mo>[</mo><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mn>4</mn><mo>&#160;</mo><mo>(</mo><mi>lo&#7841;i</mi><mo>)</mo></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>2</mn></mtd></mtr></mtable></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>2</mn><mo>&#160;</mo><mo>&#8660;</mo><mo>&#160;</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>&#177;</mo><mn>2</mn></math></p> <p>Gọi S<sub>1</sub> l&agrave; diện t&iacute;ch giới hạn bởi (C) v&agrave; (P) ở ph&iacute;a tr&ecirc;n trục ho&agrave;nh.</p> <p>Ta c&oacute;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="normal">S</mi><mn>1</mn></msub><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>2</mn><msubsup><mo>&#8747;</mo><mn>0</mn><mn>2</mn></msubsup><mo>(</mo><msqrt><mn>8</mn><mo>-</mo><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup></msqrt><mo>-</mo><mfrac><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mi mathvariant="normal">x</mi></mfrac><mo>)</mo><mi>dx</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>2</mn><msubsup><mo>&#8747;</mo><mn>0</mn><mn>2</mn></msubsup><msqrt><mn>8</mn><mo>-</mo><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup></msqrt><mi>dx</mi><mo>-</mo><mfrac><msup><mi mathvariant="normal">x</mi><mn>3</mn></msup><mn>3</mn></mfrac><msubsup><mo>|</mo><mn>0</mn><mn>2</mn></msubsup><mo>&#160;</mo><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>2</mn><msubsup><mo>&#8747;</mo><mn>0</mn><mn>2</mn></msubsup><msqrt><mn>8</mn><mo>-</mo><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup></msqrt><mi>dx</mi><mo>-</mo><mfrac><mn>8</mn><mn>3</mn></mfrac></math></p> <p>Đặt&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>2</mn><msqrt><mn>2</mn></msqrt><mi>sint</mi><mo>&#160;</mo><mo>&#8658;</mo><mo>&#160;</mo><mi>dx</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>2</mn><msqrt><mn>2</mn></msqrt><mi>costdt</mi></math></p> <p><img src="https://static.colearn.vn:8413/v1.0/upload/library/18022022/bai-3-EzoJBv.png" alt="" width="523" height="492" /></p> <p>Đổi cận:</p> <table style="border-collapse: collapse; width: 18.4073%; height: 60.7916px;" border="1"> <tbody> <tr style="height: 22.3958px;"> <td style="width: 22.0674%; height: 22.3958px;">x</td> <td style="width: 77.3979%; height: 22.3958px;">0&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;2</td> </tr> <tr style="height: 38.3958px;"> <td style="width: 22.0674%; height: 38.3958px;">t</td> <td style="width: 77.3979%; height: 38.3958px;">0&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi mathvariant="normal">&#960;</mi><mn>4</mn></mfrac></math></td> </tr> </tbody> </table> <p>Suy ra:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>&#8747;</mo><mn>0</mn><mn>2</mn></msubsup><msqrt><mn>8</mn><mo>-</mo><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup></msqrt><mi>dx</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msubsup><mo>&#8747;</mo><mn>0</mn><mfrac><mi mathvariant="normal">&#960;</mi><mn>4</mn></mfrac></msubsup><msqrt><mn>8</mn><msup><mi>cos</mi><mn>2</mn></msup><mi mathvariant="normal">t</mi></msqrt><mo>.</mo><mn>2</mn><msqrt><mn>2</mn></msqrt><mi>costdt</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>8</mn><msubsup><mo>&#8747;</mo><mn>0</mn><mfrac><mi mathvariant="normal">&#960;</mi><mn>4</mn></mfrac></msubsup><msup><mi>cos</mi><mn>2</mn></msup><mi>tdt</mi></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><msubsup><mo>&#8747;</mo><mn>0</mn><mfrac><mi mathvariant="normal">&#960;</mi><mn>4</mn></mfrac></msubsup><mo>(</mo><mn>1</mn><mo>+</mo><mi>cos</mi><mn>2</mn><mi mathvariant="normal">t</mi><mo>)</mo><mi>dt</mi><mo>=</mo><mn>4</mn><mo>(</mo><mi mathvariant="normal">t</mi><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>sin</mi><mn>2</mn><mi mathvariant="normal">t</mi><mo>)</mo><mo>&#160;</mo><msubsup><mo>|</mo><mn>0</mn><mfrac><mi mathvariant="normal">&#960;</mi><mn>4</mn></mfrac></msubsup><mo>=</mo><mn>4</mn><mo>(</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>4</mn></mfrac><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>)</mo><mo>=</mo><mi mathvariant="normal">&#960;</mi><mo>+</mo><mn>2</mn></math></p> <p>Vậy&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="normal">S</mi><mn>1</mn></msub><mo>=</mo><mn>2</mn><mi mathvariant="normal">&#960;</mi><mo>+</mo><mn>4</mn><mo>-</mo><mfrac><mn>8</mn><mn>3</mn></mfrac><mo>=</mo><mn>2</mn><mi mathvariant="normal">&#960;</mi><mo>+</mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mo>=</mo><mfrac><mrow><mn>6</mn><mi mathvariant="normal">&#960;</mi><mo>+</mo><mn>4</mn></mrow><mn>3</mn></mfrac></math></p> <p>&nbsp; &nbsp; &nbsp; &nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mn>2</mn></msub><mo>=</mo><mn>8</mn><mi mathvariant="normal">&#960;</mi><mo>-</mo><msub><mi mathvariant="normal">S</mi><mn>1</mn></msub><mo>=</mo><mn>6</mn><mi mathvariant="normal">&#960;</mi><mo>-</mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mo>=</mo><mfrac><mrow><mn>18</mn><mi mathvariant="normal">&#960;</mi><mo>-</mo><mn>4</mn></mrow><mn>3</mn></mfrac></math></p> <p>Vậy <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi mathvariant="normal">S</mi><mn>2</mn></msub><msub><mi mathvariant="normal">S</mi><mn>1</mn></msub></mfrac><mo>=</mo><mfrac><mrow><mn>18</mn><mi mathvariant="normal">&#960;</mi><mo>-</mo><mn>4</mn></mrow><mrow><mn>6</mn><mi mathvariant="normal">&#960;</mi><mo>+</mo><mn>4</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>9</mn><mi mathvariant="normal">&#960;</mi><mo>-</mo><mn>2</mn></mrow><mrow><mn>3</mn><mi mathvariant="normal">&#960;</mi><mo>+</mo><mn>2</mn></mrow></mfrac></math>.</p>
Xem lời giải bài tập khác cùng bài