Bài 2. Hai đường thẳng vuông góc
Lý thuyết hai đường thẳng vuông góc
<p><strong>1. T&iacute;ch v&ocirc; hướng của hai vectơ trong kh&ocirc;ng gian.</strong></p> <p>&nbsp; - G&oacute;c giữa hai v&eacute;ctơ trong kh&ocirc;ng gian:</p> <p>&nbsp; G&oacute;c giữa hai vectơ (kh&aacute;c v&eacute;ctơ kh&ocirc;ng) <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>u</mi><mo>&rarr;</mo></mover><mo>,</mo><mover><mi>v</mi><mo>&rarr;</mo></mover></math>&nbsp;l&agrave; g&oacute;c <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>A</mi><mi>C</mi></mrow><mo>^</mo></mover></math>&nbsp;với&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&rarr;</mo></mover><mo>=</mo><mover><mi>u</mi><mo>&rarr;</mo></mover><mo>;</mo><mo>&nbsp;</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&rarr;</mo></mover><mo>=</mo><mover><mi>v</mi><mo>&rarr;</mo></mover></math></p> <p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/27012023/imade-s5YFRP.jpg" width="341" height="278" /></p> <p>- T&iacute;ch v&ocirc; hướng của hai vectơ trong kh&ocirc;ng gian:&nbsp;</p> <p>Cho hai vectơ kh&aacute;c vectơ kh&ocirc;ng <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>u</mi><mo>&rarr;</mo></mover><mo>,</mo><mover><mi>v</mi><mo>&rarr;</mo></mover></math>&nbsp;:</p> <p>Biểu thức&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>u</mi><mo>&rarr;</mo></mover><mo>.</mo><mover><mi>v</mi><mo>&rarr;</mo></mover><mo>=</mo><mfenced open="|" close="|"><mover><mi>u</mi><mo>&rarr;</mo></mover></mfenced><mo>.</mo><mfenced open="|" close="|"><mover><mi>v</mi><mo>&rarr;</mo></mover></mfenced><mo>.</mo><mi>cos</mi><mfenced><mrow><mover><mi>u</mi><mo>&rarr;</mo></mover><mo>,</mo><mover><mi>v</mi><mo>&rarr;</mo></mover></mrow></mfenced></math> được gọi l&agrave; t&iacute;ch v&ocirc; hướng của hai vectơ&nbsp; <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>u</mi><mo>&rarr;</mo></mover></math> v&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>v</mi><mo>&rarr;</mo></mover></math></p> <p>Nếu <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>u</mi><mo>&rarr;</mo></mover><mo>=</mo><mover><mn>0</mn><mo>&rarr;</mo></mover></math> hoặc&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>v</mi><mo>&rarr;</mo></mover><mo>=</mo><mover><mn>0</mn><mo>&rarr;</mo></mover></math> th&igrave; ta quy ước&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>u</mi><mo>&rarr;</mo></mover><mo>.</mo><mover><mi>v</mi><mo>&rarr;</mo></mover><mo>=</mo><mover><mn>0</mn><mo>&rarr;</mo></mover></math></p> <p><strong>2. Vectơ chỉ phương của đường thẳng.&nbsp;</strong></p> <p>&nbsp; - Vectơ&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>a</mi><mo>&rarr;</mo></mover><mo>&ne;</mo><mover><mn>0</mn><mo>&rarr;</mo></mover></math> l&agrave; v&eacute;ctơ chỉ phương của đường thẳng <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>&nbsp;nếu gi&aacute; của&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>a</mi><mo>&rarr;</mo></mover></math>&nbsp;song song hoặc tr&ugrave;ng với <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>.</p> <p>&nbsp; - Nếu <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>a</mi><mo>&rarr;</mo></mover></math>&nbsp;l&agrave; vectơ chỉ phương của đường thẳng <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>&nbsp;th&igrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mover><mi>a</mi><mo>&rarr;</mo></mover></math> (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>&ne;</mo><mn>0</mn><mo>)</mo></math>&nbsp;cũng l&agrave; vectơ chỉ phương của d.</p> <p>&nbsp;<strong>3. G&oacute;c giữa hai đường thẳng trong kh&ocirc;ng gian.&nbsp;</strong></p> <p><strong>&nbsp; Định nghĩa:</strong></p> <p>&nbsp; G&oacute;c giữa hai đường thẳng <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>&nbsp;v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>&nbsp;trong kh&ocirc;ng gian l&agrave; g&oacute;c giữa hai đường thẳng <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>'</mo></math>&nbsp;v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>'</mo></math>&nbsp;c&ugrave;ng đi qua</p> <p>một điểm v&agrave; lần lượt song song với <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>&nbsp;v&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math></p> <p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/27012023/imade-1-t1XFk2.jpg" width="285" height="220" /></p> <p>&nbsp;<strong>&nbsp;</strong><strong>Nhận x&eacute;t:</strong></p> <p>&nbsp; - Ta c&oacute; thể lấy điểm <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi></math>&nbsp;thuộc một trong hai đường thẳng <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>&nbsp;v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>, rồi vẽ một đường thẳng qua <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi></math>&nbsp;v&agrave; song song</p> <p>với đường thẳng c&ograve;n lại.</p> <p>&nbsp; - Nếu&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><msub><mi>u</mi><mn>1</mn></msub><mo>&rarr;</mo></mover><mo>,</mo><mo>&nbsp;</mo><mover><msub><mi>u</mi><mn>2</mn></msub><mo>&rarr;</mo></mover></math> lần lượt l&agrave; vectơ chỉ phương của <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>&nbsp;v&agrave; (<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><msub><mi>u</mi><mn>1</mn></msub><mo>&rarr;</mo></mover><mo>,</mo><mover><msub><mi>u</mi><mn>2</mn></msub><mo>&rarr;</mo></mover></math>)=<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&alpha;</mi></math><span id="MathJax-Element-37-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mover&gt;&lt;msub&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=&quot;false&quot;&gt;&amp;#x2192;&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mover&gt;&lt;msub&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=&quot;false&quot;&gt;&amp;#x2192;&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mo stretchy=&quot;false&quot;&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mo&gt;&amp;#x3B1;&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;"><span id="MJXc-Node-293" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-294" class="mjx-mrow"><span id="MJXc-Node-295" class="mjx-texatom"><span id="MJXc-Node-296" class="mjx-mrow"><span id="MJXc-Node-297" class="mjx-munderover"><span class="mjx-stack"><span class="mjx-over"><span id="MJXc-Node-303" class="mjx-mo"></span></span></span></span></span></span></span></span></span>&nbsp;th&igrave;:</p> <p>&nbsp; &nbsp; + g&oacute;c <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>a</mi><mo>;</mo><mi>b</mi></mrow></mfenced><mo>=</mo><mi>&alpha;</mi></math> nếu&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&deg;</mo><mo>&le;</mo><mi>&alpha;</mi><mo>&le;</mo><mn>90</mn><mo>&deg;</mo></math></p> <p>&nbsp; &nbsp; + g&oacute;c <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>a</mi><mo>;</mo><mi>b</mi></mrow></mfenced><mo>=</mo><mn>180</mn><mo>&deg;</mo><mo>-</mo><mi>&alpha;</mi></math>&nbsp;nếu&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>90</mn><mo>&deg;</mo><mo>&lt;</mo><mi>&alpha;</mi><mo>⩽</mo><mn>180</mn><mo>&deg;</mo></math></p> <p>- Nếu <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>∥</mo><mi>b</mi></math>&nbsp;hoặc <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>&equiv;</mo><mi>b</mi></math>&nbsp;th&igrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mover><mrow><mi>a</mi><mo>,</mo><mi>b</mi></mrow><mo>^</mo></mover></mfenced><mo>=</mo><mn>0</mn><mo>&deg;</mo></math></p> <p><strong>4. Hai đường thẳng vu&ocirc;ng g&oacute;c với nhau.</strong></p> <p><strong>&nbsp; a) Định nghĩa:</strong></p> <p>&nbsp; Hai đường thẳng được gọi l&agrave; vu&ocirc;ng g&oacute;c với nhau nếu g&oacute;c giữa ch&uacute;ng bằng&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>90</mn><mo>&deg;</mo></math></p> <p>&nbsp;&nbsp;<strong>b) Nhận x&eacute;t:</strong></p> <p>&nbsp; - Nếu&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><msub><mi>u</mi><mn>1</mn></msub><mo>&rarr;</mo></mover><mo>,</mo><mover><msub><mi>u</mi><mn>2</mn></msub><mo>&rarr;</mo></mover></math> lần lượt l&agrave; c&aacute;c VTCP của <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>&nbsp;v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>&nbsp;th&igrave;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>&perp;</mo><mi>b</mi><mo>&hArr;</mo><mover><msub><mi>u</mi><mn>1</mn></msub><mo>&rarr;</mo></mover><mo>.</mo><mover><msub><mi>u</mi><mn>2</mn></msub><mo>&rarr;</mo></mover><mo>=</mo><mn>0</mn></math></p> <p>&nbsp; - Nếu&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>a</mi><mo>∥</mo><mi>b</mi></mtd></mtr><mtr><mtd><mi>c</mi><mo>&perp;</mo><mi>a</mi></mtd></mtr></mtable></mfenced></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo fence="true" stretchy="true" symmetric="true"></mo></mrow></math>th&igrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>&perp;</mo><mi>b</mi></math></p> <p>&nbsp; - Hai đường thẳng vu&ocirc;ng g&oacute;c với nhau c&oacute; thể cắt nhau hoặc ch&eacute;o nhau.</p> <p><strong>&nbsp;c) Một số dạng to&aacute;n thường gặp&nbsp;</strong></p> <p><strong>Dạng 1: T&iacute;nh g&oacute;c giữa hai đường thẳng.</strong></p> <p><strong>Phương ph&aacute;p 1:</strong>&nbsp;Sử dụng định l&yacute; h&agrave;m số c&ocirc; sin hoặc tỉ số lượng gi&aacute;c.</p> <div class="content_simple_notice_1"> <div class="notice_text"> <p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo>&nbsp;</mo><mi>A</mi><mo>=</mo><mfrac><mrow><msup><mi>b</mi><mn>2</mn></msup><mo>+</mo><msup><mi>c</mi><mn>2</mn></msup><mo>-</mo><msup><mi>a</mi><mn>2</mn></msup></mrow><mrow><mn>2</mn><mi>b</mi><mi>c</mi></mrow></mfrac></math></p> </div> </div> <p><strong>Phương ph&aacute;p 2:</strong>&nbsp;Sử dụng c&ocirc;ng thức t&iacute;nh c&ocirc; sin g&oacute;c giữa hai đường thẳng biết hai v&eacute;c tơ chỉ phương</p> <p>của ch&uacute;ng.</p> <div class="content_simple_notice_1"> <div class="notice_text"> <p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo>&nbsp;</mo><mi>&phi;</mi><mo>=</mo><mfenced open="|" close="|"><mrow><mi>cos</mi><mfenced><mrow><mover><mi>u</mi><mo>&rarr;</mo></mover><mo>,</mo><mover><mi>v</mi><mo>&rarr;</mo></mover></mrow></mfenced></mrow></mfenced><mo>=</mo><mfrac><mfenced open="|" close="|"><mrow><mover><mi>u</mi><mo>&rarr;</mo></mover><mo>.</mo><mover><mi>v</mi><mo>&rarr;</mo></mover></mrow></mfenced><mrow><mfenced open="|" close="|"><mover><mi>u</mi><mo>&rarr;</mo></mover></mfenced><mo>.</mo><mfenced open="|" close="|"><mover><mi>v</mi><mo>&rarr;</mo></mover></mfenced></mrow></mfrac></math></p> </div> </div> <div class="content_simple_notice_1"> <div class="notice_text"> <p>&nbsp;*Để t&iacute;nh <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>u</mi><mo>&rarr;</mo></mover><mo>,</mo><mo>&nbsp;</mo><mover><mi>v</mi><mo>&rarr;</mo></mover><mo>,</mo><mfenced open="|" close="|"><mover><mi>u</mi><mo>&rarr;</mo></mover></mfenced><mo>,</mo><mfenced open="|" close="|"><mover><mi>v</mi><mo>&rarr;</mo></mover></mfenced></math> ta chọn ba v&eacute;c tơ <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>a</mi><mo>&rarr;</mo></mover><mo>,</mo><mo>&nbsp;</mo><mover><mi>b</mi><mo>&rarr;</mo></mover><mo>,</mo><mo>&nbsp;</mo><mover><mi>c</mi><mo>&rarr;</mo></mover></math> kh&ocirc;ng đồng phẳng m&agrave; c&oacute; thể t&iacute;nh được độ d&agrave;i v&agrave; g&oacute;c</p> <p>giữa ch&uacute;ng, sau đ&oacute; biểu thị c&aacute;c v&eacute;c tơ&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>u</mi><mo>&rarr;</mo></mover><mo>,</mo><mo>&nbsp;</mo><mover><mi>v</mi><mo>&rarr;</mo></mover></math> &nbsp;qua c&aacute;c v&eacute;c tơ <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>a</mi><mo>&rarr;</mo></mover><mo>,</mo><mo>&nbsp;</mo><mover><mi>b</mi><mo>&rarr;</mo></mover><mo>,</mo><mo>&nbsp;</mo><mover><mi>c</mi><mo>&rarr;</mo></mover></math>&nbsp;rồi thực hiện c&aacute;c t&iacute;nh to&aacute;n.</p> </div> </div> <p><strong>Dạng 2: Chứng minh hai đường thẳng vu&ocirc;ng g&oacute;c.</strong></p> <p><strong>Phương ph&aacute;p:</strong></p> <p>Để chứng minh hai đường thẳng <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>d</mi><mn>1</mn></msub><mo>,</mo><mo>&nbsp;</mo><msub><mi>d</mi><mn>2</mn></msub></math>&nbsp;vu&ocirc;ng g&oacute;c ta thực hiện một trong c&aacute;c c&aacute;ch:</p> <p><strong>C&aacute;ch 1:</strong> Chứng minh&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><msub><mi>u</mi><mn>1</mn></msub><mo>&rarr;</mo></mover><mo>.</mo><mover><msub><mi>u</mi><mn>2</mn></msub><mo>&rarr;</mo></mover><mo>=</mo><mn>0</mn></math>, trong đ&oacute; <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><msub><mi>u</mi><mn>1</mn></msub><mo>&rarr;</mo></mover><mo>,</mo><mover><msub><mi>u</mi><mn>2</mn></msub><mo>&rarr;</mo></mover></math> l&agrave; c&aacute;c VTCP của <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>d</mi><mn>1</mn></msub><mo>,</mo><mo>&nbsp;</mo><msub><mi>d</mi><mn>2</mn></msub></math>.</p> <p><strong>C&aacute;ch 2:</strong> Sử dụng t&iacute;nh chất&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>b</mi><mo>∥</mo><mi>c</mi></mtd></mtr><mtr><mtd><mi>a</mi><mo>&perp;</mo><mi>c</mi></mtd></mtr></mtable></mfenced><mo>&rArr;</mo><mi>a</mi><mo>&perp;</mo><mi>b</mi></math></p> <p><strong>C&aacute;ch 3:</strong> Sử dụng định l&yacute; Pi-ta-go hoặc x&aacute;c định g&oacute;c giữa&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>d</mi><mn>1</mn></msub><mo>,</mo><mo>&nbsp;</mo><msub><mi>d</mi><mn>2</mn></msub></math>&nbsp;v&agrave; t&iacute;nh trực tiếp g&oacute;c đ&oacute;.</p> <p>&nbsp;</p>
Xem lời giải bài tập khác cùng bài