Ôn tập chương I - Hàm số lượng giác và phương trình lượng giác
Hướng dẫn giải Bài 4 (Trang 41 SGK Toán Đại số & Giải tích 11)
<p>4. Giải c&aacute;c phương tr&igrave;nh: a) sin(x+1)=<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2</mn><mn>3</mn></mfrac></math>;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; b)<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>sin</mi><mn>2</mn></msup><mn>2</mn><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math></p> <p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; c)<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>cos</mi><mn>2</mn></msup><mfrac><mi>x</mi><mn>2</mn></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; d) tan<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mi mathvariant="normal">&#960;</mi><mn>12</mn></mfrac><mo>+</mo><mn>12</mn><mi>x</mi></mrow></mfenced><mo>=</mo><mo>-</mo><msqrt><mn>3</mn></msqrt></math></p> <p>Giải:</p> <p>a) sin(x+1)=<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2</mn><mn>3</mn></mfrac></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8660;</mo><msubsup><mo>[</mo><mrow><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mi mathvariant="normal">&#960;</mi><mo>-</mo><mi>arcsin</mi><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>+</mo><mi mathvariant="normal">k</mi><mn>2</mn><mi mathvariant="normal">&#960;</mi></mrow><mrow><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mi>a</mi><mi>r</mi><mi>c</mi><mi>sin</mi><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>+</mo><mi>k</mi><mn>2</mn><mi mathvariant="normal">&#960;</mi></mrow></msubsup></math></p> <p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8660;</mo><msubsup><mo>[</mo><mrow><mi>x</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>+</mo><mi mathvariant="normal">&#960;</mi><mo>-</mo><mi>arcsin</mi><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>+</mo><mi mathvariant="normal">k</mi><mn>2</mn><mi mathvariant="normal">&#960;</mi></mrow><mrow><mi>x</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>+</mo><mi>a</mi><mi>r</mi><mi>c</mi><mi>sin</mi><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>+</mo><mi>k</mi><mn>2</mn><mi mathvariant="normal">&#960;</mi></mrow></msubsup><mo>&#160;</mo><mo>&#160;</mo><mo>(</mo><mi>k</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8484;</mi><mo>)</mo></math></p> <p>b) <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>sin</mi><mn>2</mn></msup><mn>2</mn><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8660;</mo><mfrac><mrow><mn>1</mn><mo>-</mo><mi>cos</mi><mn>4</mn><mi>x</mi></mrow><mn>2</mn></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8660;</mo><mi>cos</mi><mn>4</mn><mi>x</mi><mo>=</mo><mn>0</mn></math></p> <p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8660;</mo><mn>4</mn><mi>x</mi><mo>=</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>2</mn></mfrac><mo>+</mo><mi>k</mi><mi mathvariant="normal">&#960;</mi><mo>&#8660;</mo><mi mathvariant="normal">x</mi><mo>=</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>8</mn></mfrac><mo>+</mo><mi mathvariant="normal">k</mi><mfrac><mi mathvariant="normal">&#960;</mi><mn>4</mn></mfrac><mo>;</mo><mo>&#160;</mo><mi mathvariant="normal">k</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8484;</mi></math></p> <p>c)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mi>o</mi><msup><mi>t</mi><mn>2</mn></msup><mfrac><mi>x</mi><mn>2</mn></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>&#8660;</mo><mi>c</mi><mi>o</mi><mi>t</mi><mfrac><mi>x</mi><mn>2</mn></mfrac><mo>=</mo><mo>&#177;</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>3</mn></mfrac><mo>&#8660;</mo><mfrac><mi>x</mi><mn>2</mn></mfrac><mo>=</mo><mo>&#177;</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>3</mn></mfrac><mo>+</mo><mi>k</mi><mi mathvariant="normal">&#960;</mi><mo>&#8660;</mo><mi mathvariant="normal">x</mi><mo>=</mo><mo>&#177;</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">&#960;</mi></mrow><mn>3</mn></mfrac><mo>+</mo><mi mathvariant="normal">k</mi><mn>2</mn><mi mathvariant="normal">&#960;</mi><mo>,</mo><mo>&#160;</mo><mi mathvariant="normal">k</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8484;</mi></math></p> <p>d) <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mfenced><mrow><mfrac><mi mathvariant="normal">&#960;</mi><mn>12</mn></mfrac><mo>+</mo><mn>12</mn><mi>x</mi></mrow></mfenced><mo>=</mo><mo>-</mo><msqrt><mn>3</mn></msqrt><mo>&#8660;</mo><mi>tan</mi><mfenced><mrow><mfrac><mi mathvariant="normal">&#960;</mi><mn>12</mn></mfrac><mo>+</mo><mn>12</mn><mi>x</mi></mrow></mfenced><mo>=</mo><mi>tan</mi><mfenced><mrow><mo>-</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>3</mn></mfrac></mrow></mfenced></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8660;</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>12</mn></mfrac><mo>+</mo><mn>12</mn><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>3</mn></mfrac><mo>+</mo><mi>k</mi><mi mathvariant="normal">&#960;</mi><mo>&#8660;</mo><mn>12</mn><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>-</mo><mfrac><mrow><mn>5</mn><mi mathvariant="normal">&#960;</mi></mrow><mn>12</mn></mfrac><mo>+</mo><mi>k&#960;</mi><mo>&#8660;</mo><mi mathvariant="normal">x</mi><mo>=</mo><mo>-</mo><mfrac><mrow><mn>5</mn><mi mathvariant="normal">&#960;</mi></mrow><mn>144</mn></mfrac><mo>+</mo><mi mathvariant="normal">k</mi><mfrac><mi mathvariant="normal">&#960;</mi><mn>12</mn></mfrac><mo>,</mo><mo>&#160;</mo><mi mathvariant="normal">k</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8484;</mi></math></p>
Hướng dẫn Giải Bài 4 (trang 41, SGK Toán Đại số & Giải Tích 11)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 4 (trang 41, SGK Toán Đại số & Giải Tích 11)
GV: GV colearn