Bài 1. Định nghĩa và ý nghĩa của đạo hàm
Hướng dẫn giải Bài 3 (Trang 156 SGK Toán Đại số & Giải tích 11)
<p>T&iacute;nh ( bằng định nghĩa) đạo h&agrave;m của mỗi h&agrave;m số sau tại c&aacute;c điểm đ&atilde; chỉ ra&nbsp;</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo>&#160;</mo><mi>y</mi><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>x</mi><mo>&#160;</mo><mi>t</mi><mi>&#7841;</mi><mi>i</mi><mo>&#160;</mo><msub><mi>x</mi><mn>0</mn></msub><mo>=</mo><mn>1</mn><mo>&#160;</mo><mo>;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mi>b</mi><mo>,</mo><mo>&#160;</mo><mi>y</mi><mo>=</mo><mfrac><mn>1</mn><mi>x</mi></mfrac><mo>&#160;</mo><mi>t</mi><mi>a</mi><mi>&#7883;</mi><mo>&#160;</mo><msub><mi>x</mi><mn>0</mn></msub><mo>=</mo><mn>2</mn><mo>;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mi>c</mi><mo>,</mo><mo>&#160;</mo><mi>y</mi><mo>=</mo><mfrac><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfrac><mo>&#160;</mo><mi>t</mi><mi>&#7841;</mi><mi>i</mi><mo>&#160;</mo><msub><mi>x</mi><mn>0</mn></msub><mo>=</mo><mn>0</mn><mspace linebreak="newline"/><mspace linebreak="newline"/><mi>G</mi><mi>i</mi><mi>&#7843;</mi><mi>i</mi><mo>&#160;</mo><mspace linebreak="newline"/><mi>a</mi><mo>,</mo><mo>&#160;</mo><mo>&#9651;</mo><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mrow><mn>1</mn><mo>+</mo><mo>&#9651;</mo><mi>x</mi></mrow></mfenced><mo>-</mo><mi>f</mi><mfenced><mn>1</mn></mfenced><mo>=</mo><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mo>&#9651;</mo><mi>x</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>1</mn><mo>+</mo><mo>&#9651;</mo><mi>x</mi><mo>-</mo><mn>2</mn><mo>=</mo><mn>3</mn><mo>&#9651;</mo><mi>x</mi><mo>+</mo><msup><mfenced><mrow><mo>&#9651;</mo><mi>x</mi></mrow></mfenced><mn>2</mn></msup><mspace linebreak="newline"/><mo>&#8658;</mo><mfrac><mrow><mo>&#9651;</mo><mi>y</mi></mrow><mrow><mo>&#9651;</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>3</mn><mo>+</mo><mo>&#9651;</mo><mi>x</mi><mo>&#8658;</mo><mi>f</mi><mo>'</mo><mfenced><mn>1</mn></mfenced><mo>=</mo><munder><mi>lim</mi><mrow><mo>&#9651;</mo><mi>x</mi><mo>&#8594;</mo><mn>0</mn></mrow></munder><mfrac><mrow><mo>&#9651;</mo><mi>y</mi></mrow><mrow><mo>&#9651;</mo><mi>x</mi></mrow></mfrac><mo>=</mo><munder><mi>lim</mi><mrow><mo>&#9651;</mo><mi>x</mi><mo>&#8594;</mo><mn>0</mn></mrow></munder><mfenced><mrow><mn>3</mn><mo>+</mo><mo>&#9651;</mo><mi>x</mi></mrow></mfenced><mo>=</mo><mn>3</mn><mspace linebreak="newline"/><mi>b</mi><mo>,</mo><mo>&#160;</mo><mo>&#9651;</mo><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mrow><mn>2</mn><mo>+</mo><mo>&#9651;</mo><mi>x</mi></mrow></mfenced><mo>-</mo><mi>f</mi><mfenced><mn>2</mn></mfenced><mo>=</mo><mfrac><mn>1</mn><mrow><mn>2</mn><mo>+</mo><mo>&#9651;</mo><mi>x</mi></mrow></mfrac><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>=</mo><mfrac><mrow><mo>-</mo><mo>&#9651;</mo><mi>x</mi></mrow><mrow><mn>2</mn><mfenced><mrow><mn>2</mn><mo>+</mo><mo>&#9651;</mo><mi>x</mi></mrow></mfenced></mrow></mfrac><mspace linebreak="newline"/><mo>&#8658;</mo><mfrac><mrow><mo>&#9651;</mo><mi>y</mi></mrow><mrow><mo>&#9651;</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mrow><mn>2</mn><mfenced><mrow><mn>2</mn><mo>+</mo><mo>&#9651;</mo><mi>x</mi></mrow></mfenced></mrow></mfrac><mo>&#8658;</mo><mi>f</mi><mo>'</mo><mfenced><mn>2</mn></mfenced><mo>=</mo><munder><mi>lim</mi><mrow><mo>&#9651;</mo><mi>x</mi><mo>&#8594;</mo><mn>0</mn></mrow></munder><mfrac><mrow><mo>&#9651;</mo><mi>y</mi></mrow><mrow><mo>&#9651;</mo><mi>x</mi></mrow></mfrac><mo>=</mo><munder><mi>lim</mi><mrow><mo>&#9651;</mo><mi>x</mi><mo>&#8594;</mo><mn>0</mn></mrow></munder><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mrow><mn>2</mn><mfenced><mrow><mn>2</mn><mo>+</mo><mo>&#9651;</mo><mi>x</mi></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mn>4</mn></mfrac><mspace linebreak="newline"/><mi>c</mi><mo>,</mo><mo>&#160;</mo><mo>&#9651;</mo><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mrow><mo>&#9651;</mo><mi>x</mi></mrow></mfenced><mo>-</mo><mi>f</mi><mfenced><mn>0</mn></mfenced><mo>=</mo><mfrac><mrow><mo>&#9651;</mo><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mrow><mo>&#9651;</mo><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mn>1</mn><mo>=</mo><mfrac><mrow><mn>2</mn><mo>&#9651;</mo><mi>x</mi></mrow><mrow><mo>&#9651;</mo><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfrac><mspace linebreak="newline"/><mo>&#8658;</mo><mfrac><mrow><mo>&#9651;</mo><mi>y</mi></mrow><mrow><mo>&#9651;</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfrac><mn>2</mn><mrow><mo>&#9651;</mo><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfrac><mo>&#8658;</mo><mi>f</mi><mo>'</mo><mfenced><mn>0</mn></mfenced><mo>=</mo><mo>-</mo><mn>2</mn><mspace linebreak="newline"/></math></p>
Xem lời giải bài tập khác cùng bài