Bài tập ôn tập chương 1
Hướng dẫn giải Bài 2 (Trang 34 SGK Toán Hình học 11)
<p>Trong mặt phẳng toạ độ Oxy cho điểm A(-1; 2) v&agrave; đường thẳng d c&oacute; phương tr&igrave;nh 3x + y +1 = 0.</p> <p>T&igrave;m ảnh của A v&agrave; d</p> <p>a) Qua ph&eacute;p tịnh tiến theo vectơ&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>v</mi><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfenced><mrow><mn>2</mn><mo>;</mo><mo>&#160;</mo><mn>1</mn></mrow></mfenced></math></p> <p>b) Qua ph&eacute;p đối xứng qua trục Oy</p> <p>c) Qua ph&eacute;p đối xứng qua gốc toạ độ</p> <p>d) Qua ph&eacute;p quay t&acirc;m O g&oacute;c&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>90</mn><mo>&#176;</mo></math></p> <p>Giải:</p> <p>Gọi A' v&agrave; d' lần lượt l&agrave; ảnh của A v&agrave; d qua c&aacute;c ph&eacute;p biến h&igrave;nh tr&ecirc;n</p> <p>a) Biểu thức toạ độ của ph&eacute;p tịnh tiến vectơ&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>v</mi><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfenced><mrow><mn>2</mn><mo>;</mo><mo>&#160;</mo><mn>1</mn></mrow></mfenced></math>&nbsp;l&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>x</mi><mo>'</mo><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>2</mn><mo>&#160;</mo><mo>+</mo><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi><mo>'</mo><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>1</mn><mo>&#160;</mo><mo>+</mo><mi>y</mi><mo>&#160;</mo></mtd></mtr></mtable></mfenced></math></p> <p>A(-1; 2) n&ecirc;n A' (1; 3)</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi><mo>&#160;</mo><mfenced><mrow><mi>x</mi><mo>,</mo><mo>&#160;</mo><mi>y</mi></mrow></mfenced><mo>&#160;</mo><mo>&#8712;</mo><mo>&#160;</mo><mi>d</mi><mo>&#160;</mo><mo>&#8660;</mo><mo>&#160;</mo><mn>3</mn><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>y</mi><mo>&#160;</mo><mo>+</mo><mn>1</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mo>&#8660;</mo><mo>&#160;</mo><mn>3</mn><mfenced><mrow><mi>x</mi><mo>'</mo><mo>-</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mfenced><mrow><mi>y</mi><mo>'</mo><mo>-</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mn>1</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mspace linebreak="newline"/></math></p> <p><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span> &nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8660;</mo><mo>&#160;</mo><mn>3</mn><mi>x</mi><mo>'</mo><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>y</mi><mo>'</mo><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>6</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>&#8660;</mo><mo>&#160;</mo><mi>M</mi><mo>'</mo><mo>(</mo><mi>x</mi><mo>'</mo><mo>,</mo><mo>&#160;</mo><mi>y</mi><mo>'</mo><mo>)</mo><mo>&#160;</mo><mo>&#8712;</mo><mo>&#160;</mo><mi>d</mi><mo>'</mo></math></p> <p>d' c&oacute; phương tr&igrave;nh l&agrave; 3x + y - 6 = 0&nbsp;</p> <p>b) Biểu thức toạ độ của ph&eacute;p đối xứng qua trục Oy l&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>x</mi><mo>'</mo><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi><mo>'</mo><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi>y</mi></mtd></mtr></mtable></mfenced></math></p> <p>A(-1; 2) n&ecirc;n A'(1; 2)</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi><mo>&#160;</mo><mo>(</mo><mi>x</mi><mo>;</mo><mo>&#160;</mo><mi>y</mi><mo>)</mo><mo>&#160;</mo><mo>&#8712;</mo><mo>&#160;</mo><mi>d</mi><mo>&#160;</mo><mo>&#8660;</mo><mo>&#160;</mo><mn>3</mn><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>y</mi><mo>&#160;</mo><mo>+</mo><mn>1</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mo>&#8660;</mo><mo>-</mo><mn>3</mn><mi>x</mi><mo>'</mo><mo>&#160;</mo><mo>+</mo><mi>y</mi><mo>'</mo><mo>&#160;</mo><mo>+</mo><mn>1</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn></math></p> <p><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8660;</mo><mn>3</mn><mi>x</mi><mo>'</mo><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi>y</mi><mo>'</mo><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>1</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>&#8660;</mo><mi>M</mi><mo>'</mo><mo>&#160;</mo><mo>(</mo><mi>x</mi><mo>'</mo><mo>;</mo><mo>&#160;</mo><mi>y</mi><mo>'</mo><mo>)</mo><mo>&#160;</mo><mo>&#8712;</mo><mi>d</mi><mo>'</mo></math></p> <p>d' c&oacute; phương tr&igrave;nh l&agrave; 3x - y - 1 = 0</p> <p>c) Biểu thức toạ độ của ph&eacute;p đối xứng qua gốc toạ độ 0 L&Agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>x</mi><mo>'</mo><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi><mo>'</mo><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mi>y</mi><mo>&#160;</mo></mtd></mtr></mtable></mfenced></math></p> <p>A (-1; 2) n&ecirc;n A' (1; -2)</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi><mo>&#160;</mo><mfenced><mrow><mi>x</mi><mo>;</mo><mo>&#160;</mo><mi>y</mi></mrow></mfenced><mo>&#160;</mo><mo>&#8712;</mo><mo>&#160;</mo><mi>d</mi><mo>&#160;</mo><mo>&#8660;</mo><mo>&#160;</mo><mn>3</mn><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>y</mi><mo>&#160;</mo><mo>+</mo><mn>1</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>&#8660;</mo><mn>3</mn><mi>x</mi><mo>'</mo><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi>y</mi><mo>'</mo><mo>&#160;</mo><mo>+</mo><mn>1</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn></math></p> <p><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8660;</mo><mn>3</mn><mi>x</mi><mo>'</mo><mo>&#160;</mo><mo>+</mo><mi>y</mi><mo>'</mo><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>1</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mo>&#8660;</mo><mi>M</mi><mo>'</mo><mo>(</mo><mi>x</mi><mo>'</mo><mo>;</mo><mo>&#160;</mo><mi>y</mi><mo>'</mo><mo>)</mo><mo>&#160;</mo><mo>&#8712;</mo><mi>d</mi><mo>&#160;</mo></math></p> <p>d' c&oacute; phương tr&igrave;nh l&agrave; 3x + y -1 = 0.</p> <p>d) Qua ph&eacute;p quay t&acirc;m O g&oacute;c&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>90</mn><mo>&#176;</mo></math>&nbsp;A biến th&agrave;nh A'(-2; -1), B(0; -1) biến th&agrave;ng B'(1; 0). Vậy d' l&agrave; đường</p> <p>thẳng A'B' c&oacute; phương tr&igrave;nh&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow><mrow><mo>-</mo><mn>3</mn></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mi>y</mi><mrow><mo>-</mo><mn>1</mn></mrow></mfrac></math>&nbsp;hay x - 3y -1 = 0</p>
Hướng dẫn giải bài 2 (trang 34, SGK Hình 11)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn giải bài 2 (trang 34, SGK Hình 11)
GV: GV colearn