Bài 30: Giải bài toán về hệ thấu kính
Hướng dẫn giải Bài 5 (Trang 195 SGK Vật lý 11)
<p>5. Một thấu k&iacute;nh mỏng phẳng - l&otilde;i L<sub>1</sub>&nbsp;c&oacute; ti&ecirc;u cự f<sub>1</sub>&nbsp;= 60 cm được gh&eacute;p s&aacute;t đồng trục với một thấu k&iacute;nh mỏng phẳng - lồi kh&aacute;c&nbsp;L<sub>2</sub>&nbsp;c&oacute; ti&ecirc;u cự&nbsp;f<sub>2</sub>&nbsp;= 30 cm. Mặt phẳng của hai thấu k&iacute;nh s&aacute;t nhau.</p> <p>Thấu k&iacute;nh L<sub>1</sub>&nbsp;c&oacute; đường k&iacute;nh r&igrave;a gấp đ&ocirc;i đường k&iacute;nh r&igrave;a của thấu k&iacute;nh L<sub>2</sub>. Một điểm s&aacute;ng S nằm tr&ecirc;n trục ch&iacute;nh của hệ, trước&nbsp;L<sub>1</sub>.&nbsp;&nbsp;</p> <p>a) Chứng tỏ c&oacute; hai ảnh của S được tạo bởi hệ.</p> <p>b) T&igrave;m điều kiện về vị tr&iacute; của S để hai ảnh đều thật v&agrave; hai ảnh đều ảo.</p> <p><strong>Giải</strong></p> <p>&nbsp;</p> <p><strong>a)</strong></p> <p>Khi ch&ugrave;m tia s&aacute;ng từ S tới c&aacute;c điểm tới từ miền v&agrave;nh ngo&agrave;i của thấu k&iacute;nh L<sub>2</sub>&nbsp;trở ra th&igrave; chỉ đi qua thấu k&iacute;nh L<sub>1</sub>&nbsp;v&agrave; ch&ugrave;m tia l&oacute; sẽ tạo ảnh S<sub>1</sub></p> <p>C&ograve;n ch&ugrave;m tia s&aacute;ng từ S tới c&aacute;c điểm tới trong trong khoảng từ t&acirc;m thấu k&iacute;nh tới miền v&agrave;nh của thấu k&iacute;nh L<sub>2</sub>&nbsp;th&igrave; đi qua cả hai thấu k&iacute;nh L<sub>1</sub>&nbsp;v&agrave; L<sub>2</sub>&nbsp;v&agrave; ch&ugrave;m tia l&oacute; sẽ tạo ảnh S<sub>2</sub>.</p> <p>Sơ đồ tạo ảnh qua thấu k&iacute;nh&nbsp;L<sub>1</sub></p> <p><img src="https://vietjack.com/giai-bai-tap-vat-ly-11/images/bai-5-trang-195-sgk-vat-ly-11-1.PNG" alt="Giải b&agrave;i tập Vật L&yacute; 11 | Giải L&yacute; 11" /></p> <p>Sơ đồ tạo ảnh của hệ hai thấu k&iacute;nh đồng trục:</p> <p><img src="https://vietjack.com/giai-bai-tap-vat-ly-11/images/bai-5-trang-195-sgk-vat-ly-11-2.PNG" alt="Giải b&agrave;i tập Vật L&yacute; 11 | Giải L&yacute; 11" /></p> <p>Trong đ&oacute;:&nbsp;<span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 19.36px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mstyle displaystyle=&quot;true&quot; scriptlevel=&quot;0&quot;&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mfrac&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msub&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mfrac&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msup&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msub&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mo&gt;&amp;#x2032;&lt;/mo&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mfrac&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msub&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/mstyle&gt;&lt;/math&gt;"><span id="MJXc-Node-1" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mstyle"><span id="MJXc-Node-4" class="mjx-mrow"><span id="MJXc-Node-5" class="mjx-texatom"><span id="MJXc-Node-6" class="mjx-mrow"><span id="MJXc-Node-7" class="mjx-mfrac"><span class="mjx-box MJXc-stacked"><span class="mjx-numerator"><span id="MJXc-Node-8" class="mjx-mn"></span></span></span></span></span></span></span></span></span></span><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><msub><mi>d</mi><mn>1</mn></msub></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mi>d</mi><msub><mo>'</mo><mn>1</mn></msub></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><msub><mi>f</mi><mn>2</mn></msub></mfrac></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="true" scriptlevel="0"><mrow class="MJX-TeXAtom-ORD"><mfrac><mrow class="MJX-TeXAtom-ORD"><mrow class="MJX-TeXAtom-ORD"><msub><mn></mn></msub></mrow></mrow></mfrac></mrow></mstyle></math></span></p> <p>f<sub>2</sub>&nbsp;= 30cm</p> <p>Trong đ&oacute;:&nbsp;<span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 19.36px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mstyle displaystyle=&quot;true&quot; scriptlevel=&quot;0&quot;&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mfrac&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msub&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mfrac&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msup&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msub&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mo&gt;&amp;#x2032;&lt;/mo&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mfrac&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msub&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mn&gt;12&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/mstyle&gt;&lt;/math&gt;"><span id="MJXc-Node-42" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-43" class="mjx-mrow"><span id="MJXc-Node-44" class="mjx-mstyle"><span id="MJXc-Node-45" class="mjx-mrow"><span id="MJXc-Node-46" class="mjx-texatom"><span id="MJXc-Node-47" class="mjx-mrow"><span id="MJXc-Node-48" class="mjx-mfrac"><span class="mjx-box MJXc-stacked"><span class="mjx-numerator"><span id="MJXc-Node-49" class="mjx-mn"></span></span></span></span></span></span></span></span></span></span><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><msub><mi>d</mi><mn>2</mn></msub></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mi>d</mi><msub><mo>'</mo><mn>2</mn></msub></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><msub><mi>f</mi><mn>12</mn></msub></mfrac></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="true" scriptlevel="0"><mrow class="MJX-TeXAtom-ORD"><mfrac><mrow class="MJX-TeXAtom-ORD"><mrow class="MJX-TeXAtom-ORD"><msub><mrow class="MJX-TeXAtom-ORD"><mn></mn></mrow></msub></mrow></mrow></mfrac></mrow></mstyle></math></span></p> <p>D<sub>12</sub>&nbsp;= D<sub>1</sub>&nbsp;+D<sub>2</sub></p> <p><span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 19.2px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mo stretchy=&quot;false&quot;&gt;&amp;#x21D2;&lt;/mo&gt;&lt;mstyle displaystyle=&quot;true&quot; scriptlevel=&quot;0&quot;&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mfrac&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msub&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mn&gt;12&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mfrac&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msub&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mfrac&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msub&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;mo stretchy=&quot;false&quot;&gt;&amp;#x21D2;&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msub&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mn&gt;12&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;20&lt;/mn&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mstyle&gt;&lt;/math&gt;"><span id="MJXc-Node-85" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-86" class="mjx-mrow"><span id="MJXc-Node-87" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">&rArr;</span></span><span id="MJXc-Node-88" class="mjx-mstyle MJXc-space3"><span id="MJXc-Node-89" class="mjx-mrow"><span id="MJXc-Node-90" class="mjx-texatom"><span id="MJXc-Node-91" class="mjx-mrow"><span id="MJXc-Node-92" class="mjx-mfrac"><span class="mjx-box MJXc-stacked"><span class="mjx-numerator"><span id="MJXc-Node-93" class="mjx-mn"></span></span></span></span></span></span></span></span></span></span><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><msub><mi>f</mi><mn>12</mn></msub></mfrac><mo>=</mo><mfrac><mn>1</mn><msub><mi>f</mi><mn>1</mn></msub></mfrac><mo>+</mo><mfrac><mn>1</mn><msub><mi>f</mi><mn>2</mn></msub></mfrac><mo>&#8658;</mo><msub><mi>f</mi><mn>12</mn></msub><mo>=</mo><mn>20</mn><mo>&#160;</mo><mi>c</mi><mi>m</mi></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="true" scriptlevel="0"><mi></mi></mstyle></math></span></p> <p>V&igrave; f<sub>2</sub>&nbsp;&ne; f<sub>12</sub>&nbsp;&rArr; d<sub>1</sub>&rsquo; &ne; d<sub>2</sub>&rsquo;</p> <p>&rArr; Hai h&igrave;nh ảnh S<sub>1</sub>&nbsp;v&agrave; S<sub>2</sub>&nbsp;kh&ocirc;ng tr&ugrave;ng nhau</p> <p><strong>b)</strong>&nbsp;V&igrave;&nbsp;<span id="MathJax-Element-4-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 19.36px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;msub&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;&amp;gt;&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;&amp;gt;&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mn&gt;12&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;"><span id="MJXc-Node-139" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-140" class="mjx-mrow"><span id="MJXc-Node-141" class="mjx-msubsup"><span class="mjx-base"><span id="MJXc-Node-142" class="mjx-mi"></span></span></span></span></span><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>f</mi><mn>1</mn></msub><mo>&#62;</mo><msub><mi>f</mi><mn>2</mn></msub><mo>&#62;</mo><msub><mi>f</mi><mn>12</mn></msub></math><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mrow class="MJX-TeXAtom-ORD"><mn></mn></mrow></msub></math></span>&nbsp;n&ecirc;n:</p> <p>* Điều kiện để hai ảnh S<sub>1</sub>, S<sub>2</sub>&nbsp;đều thật l&agrave;: d<sub>1</sub>&nbsp;v&agrave; d<sub>2&nbsp;</sub>&gt; f<sub>max</sub>=f1=60cm</p> <p>* Điều kiện để hai ảnh S<sub>1</sub>, S<sub>2</sub>&nbsp;đều ảo l&agrave;∶d<sub>1</sub>&nbsp;v&agrave; d<sub>2&nbsp;</sub>&lt; f<sub>min</sub>=f<sub>12</sub>=20cm</p> <p>&nbsp;</p>
Hướng Dẫn Giải Bài 5 ( Trang 195 - SGK Vật Lí 11)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng Dẫn Giải Bài 5 ( Trang 195 - SGK Vật Lí 11)
GV: GV colearn