Bài 3: Đồ thị của hàm số <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi><mo>&#160;</mo><mfenced><mrow><mi>a</mi><mo>&#160;</mo><mo>&#8800;</mo><mn>0</mn></mrow></mfenced></math>
Hướng dẫn giải Bài 19 (Trang 52 SGK Toán 9, Tập 1)
<p><strong>B&agrave;i 19 (Trang 52 SGK To&aacute;n 9, Tập 1):</strong></p> <p>Đồ thị của h&agrave;m số&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mn>3</mn></msqrt><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msqrt><mn>3</mn></msqrt></math>&nbsp;được vẽ bằng compa v&agrave; thước thẳng (h.8).</p> <p>H&atilde;y thực hiện c&aacute;ch vẽ đ&oacute; rồi n&ecirc;u lại c&aacute;ch thực hiện.</p> <p><em>&Aacute;p dụng:</em>&nbsp;Vẽ đồ thị của h&agrave;m số <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mn>5</mn></msqrt><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msqrt><mn>5</mn></msqrt></math>&nbsp;bằng compa v&agrave; thước thẳng.</p> <p><em>Hướng dẫn:</em>&nbsp;T&igrave;m điểm tr&ecirc;n trục tung c&oacute; tung độ bằng&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>5.</mn></msqrt></math><span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; color: #000000; font-family: 'Open Sans', Arial, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;msqrt&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/msqrt&gt;&lt;/math&gt;"><span id="MJXc-Node-21" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-22" class="mjx-mrow"><span id="MJXc-Node-23" class="mjx-msqrt"></span></span></span></span></p> <p>&nbsp;</p> <p><strong><span style="text-decoration: underline;"><em>Hướng dẫn giải:</em></span></strong></p> <p>a)</p> <p>Cho x = 0 =&gt;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mn>3</mn></msqrt></math>, ta được điểm&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>;</mo><msqrt><mn>3</mn></msqrt></mrow></mfenced></math></p> <p>Cho y = 0 =&gt;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>3</mn></msqrt><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msqrt><mn>3</mn></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mo>=</mo><mo>&#62;</mo><mo>&#160;</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mn>1</mn><mo>,</mo><mo>&#160;</mo><mi>ta</mi><mo>&#160;</mo><mi>&#273;&#432;&#7907;c</mi><mo>&#160;</mo><mi>&#273;i&#7875;m</mi><mo>&#160;</mo><mfenced><mrow><mo>-</mo><mn>1</mn><mo>;</mo><mn>0</mn></mrow></mfenced></math></p> <p>Để vẽ được đồ thị&nbsp; h&agrave;m số&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mn>3</mn></msqrt><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msqrt><mn>3</mn></msqrt></math> ta cần x&aacute;c định được điểm thứ 3 tr&ecirc;n Oy.</p> <p>C&aacute;c bước vẽ đồ thị&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mn>3</mn></msqrt><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msqrt><mn>3</mn></msqrt></math></p> <p>+ Dựng điểm A(1; 1) được OA = <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>2</mn></msqrt></math></p> <p>+ Dựng điểm biểu diễn&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>2</mn></msqrt></math> tr&ecirc;n Ox: Quay một cung t&acirc;m O, b&aacute;n k&iacute;nh OA cắt tia Ox, được điểm biểu diễn <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>2</mn></msqrt></math>.</p> <p>+ Dựng điểm B(<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>2</mn></msqrt></math><span id="MathJax-Element-13-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;msqrt&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msqrt&gt;&lt;/math&gt;"><span id="MJXc-Node-86" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-87" class="mjx-mrow"><span id="MJXc-Node-88" class="mjx-msqrt"></span></span></span><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn></mn></msqrt></math></span>; 1) được OB =&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>3</mn></msqrt></math></p> <p>+ Dựng điểm biểu diễn&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>2</mn></msqrt></math><span id="MathJax-Element-15-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;msqrt&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msqrt&gt;&lt;/math&gt;"><span id="MJXc-Node-96" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-97" class="mjx-mrow"><span id="MJXc-Node-98" class="mjx-msqrt"></span></span></span><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn></mn></msqrt></math></span>. Tr&ecirc;n trục Oy: Quay một cung t&acirc;m O, b&aacute;n k&iacute;nh OB cắt tia Oy, được điểm biểu diễn&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>3</mn></msqrt></math><span id="MathJax-Element-16-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;msqrt&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/msqrt&gt;&lt;/math&gt;"><span id="MJXc-Node-101" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-102" class="mjx-mrow"><span id="MJXc-Node-103" class="mjx-msqrt"></span></span></span><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn></mn></msqrt></math></span></p> <p>+ Vẽ đường thẳng qua điểm biểu diễn <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>3</mn></msqrt></math> <span id="MathJax-Element-17-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;msqrt&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/msqrt&gt;&lt;/math&gt;"><span id="MJXc-Node-106" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-107" class="mjx-mrow"><span id="MJXc-Node-108" class="mjx-msqrt"></span></span></span></span>tr&ecirc;n Oy v&agrave; điểm biểu diễn -1 tr&ecirc;n Ox ta được đồ thị h&agrave;m số&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mn>3</mn></msqrt><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msqrt><mn>3</mn></msqrt></math></p> <p><img class="wscnph" style="max-width: 100%; display: block; margin-left: auto; margin-right: auto;" src="https://static.colearn.vn:8413/v1.0/upload/library/10052022/bai-19-trand-52-sdk-toan-9-tap-1-sua2022-YwIZ2t.png" /></p> <p>b) &Aacute;p dụng vẽ đồ thị h&agrave;m số&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mn>5</mn></msqrt><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msqrt><mn>5</mn></msqrt></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Cho</mi><mo>&#160;</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mo>=</mo><mo>&#62;</mo><mo>&#160;</mo><mi mathvariant="normal">y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mn>5</mn></msqrt><mo>,</mo><mo>&#160;</mo><mi>ta</mi><mo>&#160;</mo><mi>&#432;&#7907;c</mi><mo>&#160;</mo><mi>&#273;i&#7875;m</mi><mo>&#160;</mo><mo>(</mo><mn>0</mn><mo>;</mo><msqrt><mn>5</mn></msqrt><mo>)</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Cho</mi><mo>&#160;</mo><mi mathvariant="normal">y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mo>=</mo><mo>&#62;</mo><mo>&#160;</mo><msqrt><mn>5</mn></msqrt><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msqrt><mn>5</mn></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mo>=</mo><mo>&#62;</mo><mo>&#160;</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mn>1</mn><mo>,</mo><mo>&#160;</mo><mi>ta</mi><mo>&#160;</mo><mi>&#273;&#432;&#7907;c</mi><mo>&#160;</mo><mo>(</mo><mo>-</mo><mn>1</mn><mo>;</mo><mn>0</mn><mo>)</mo></math></p> <p>Ta phải t&igrave;m điểm tr&ecirc;n trục tung c&oacute; tung độ bằng&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>5</mn></msqrt></math></p> <p>C&aacute;ch vẽ:</p> <p>+ Dựng điểm A (2; 1) ta được OA =&nbsp;<span id="MathJax-Element-24-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;msqrt&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/msqrt&gt;&lt;/math&gt;"><span id="MJXc-Node-156" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-157" class="mjx-mrow"><span id="MJXc-Node-158" class="mjx-msqrt"><span class="mjx-box"><span class="mjx-surd"><span class="mjx-char MJXc-TeX-main-R"><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>5</mn></msqrt></math></span></span></span></span></span></span></span></p> <p>+ Dựng điểm biểu diễn&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>5</mn></msqrt></math><span id="MathJax-Element-25-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;msqrt&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/msqrt&gt;&lt;/math&gt;"><span id="MJXc-Node-161" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-162" class="mjx-mrow"><span id="MJXc-Node-163" class="mjx-msqrt"></span></span></span><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn></mn></msqrt></math></span>&nbsp;tr&ecirc;n trục Oy. Quay một cung t&acirc;m O, b&aacute;n k&iacute;nh OA cắt tia Oy, được điểm biểu diễn&nbsp;<span id="MathJax-Element-26-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;msqrt&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/msqrt&gt;&lt;/math&gt;"><span id="MJXc-Node-166" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-167" class="mjx-mrow"><span id="MJXc-Node-168" class="mjx-msqrt"></span></span></span><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>5</mn></msqrt></math></mn></msqrt></math><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn></mn></msqrt></math></span>. Vẽ đường thẳng qua điểm biểu diễn&nbsp;<span id="MathJax-Element-27-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;msqrt&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/msqrt&gt;&lt;/math&gt;"><span id="MJXc-Node-171" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-172" class="mjx-mrow"><span id="MJXc-Node-173" class="mjx-msqrt"></span></span></span><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>5</mn></msqrt></math></mn></msqrt></math><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn></mn></msqrt></math></span> tr&ecirc;n Oy v&agrave; điểm biểu diễn -1 tr&ecirc;n Ox ta được đồ thị h&agrave;m số&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mn>5</mn></msqrt><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msqrt><mn>5</mn></msqrt></math></p> <p style="text-align: center;"><span class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;msqrt&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/msqrt&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msqrt&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/msqrt&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/10052022/bai-19-trand-52-sdk-toan-9-tap-1-1-sua2022-weruEH.png" /></span></span></p> <p><span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; color: #000000; font-family: 'Open Sans', Arial, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;msqrt&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/msqrt&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msqrt&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/msqrt&gt;&lt;/math&gt;"><span id="MJXc-Node-11" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-12" class="mjx-mrow"><span id="MJXc-Node-13" class="mjx-msqrt"></span></span></span></span></p>
Hướng dẫn Giải Bài 19 (trang 52, SGK Toán 9, Tập 1)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 19 (trang 52, SGK Toán 9, Tập 1)
GV: GV colearn