Bài 10: Đường Thẳng Song Song Với Một Đường Thẳng Cho Trước
Hướng dẫn giải Bài 70 (Trang 103 SGK Toán Hình học 8, Tập 1)
<p><strong class="content_question">Đề b&agrave;i</strong></p> <p>Cho g&oacute;c vu&ocirc;ng&nbsp;<span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mi>O</mi><mi>y</mi></math></span></span>, điểm&nbsp;<span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-6" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-7" class="mjx-mrow"><span id="MJXc-Node-8" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span></span></span></span>&nbsp;thuộc tia&nbsp;<span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-9" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-10" class="mjx-mrow"><span id="MJXc-Node-11" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">O</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math></span></span>&nbsp;sao cho&nbsp;<span id="MathJax-Element-4-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-13" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-14" class="mjx-mrow"><span id="MJXc-Node-15" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">O</span></span><span id="MJXc-Node-16" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-17" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-18" class="mjx-mn MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">2</span></span><span id="MJXc-Node-19" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">c</span></span><span id="MJXc-Node-20" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">m</span></span></span></span></span>. Lấy&nbsp;<span id="MathJax-Element-5-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math></span></span>&nbsp;l&agrave; một điểm bất k&igrave; thuộc tia&nbsp;<span id="MathJax-Element-6-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>x</mi></math></span></span>. Gọi&nbsp;<span id="MathJax-Element-7-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math></span></span>&nbsp;l&agrave; trung điểm của&nbsp;<span id="MathJax-Element-8-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-31" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-32" class="mjx-mrow"><span id="MJXc-Node-33" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math></span></span>. Khi điểm&nbsp;<span id="MathJax-Element-9-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-35" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-36" class="mjx-mrow"><span id="MJXc-Node-37" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span></span></span></span>&nbsp;di chuyển tr&ecirc;n tia&nbsp;<span id="MathJax-Element-10-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>x</mi></math></span></span>&nbsp;th&igrave; điểm&nbsp;<span id="MathJax-Element-11-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-42" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-43" class="mjx-mrow"><span id="MJXc-Node-44" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span></span></span></span>&nbsp;di chuyển tr&ecirc;n đường n&agrave;o ?</p> <p><strong class="content_detail">Lời giải chi tiết</strong></p> <p><strong class="content_detail"><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/05072022/h55-bai-70-trand-103-sdk-toan-8-t1-2Rf1q6.jpg" /></strong></p> <p>Kẻ <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mi>H</mi><mo>&#10178;</mo><mi>O</mi><mo>&#8290;</mo><mi>x</mi><mo>,</mo><mi>E</mi></math> l&agrave; trung điểm của OA.<br />vi C l&agrave; trung điểm của AB (giả thiết)<br />Ta c&oacute; CB=CA (t&iacute;nh chất trung điểm)<br />CH//AO (c&ugrave;ng vu&ocirc;ng g&oacute;c Ox) (từ vu&ocirc;ng g&oacute;c đến song song)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi mathvariant="normal">H</mi></mstyle></math> l&agrave; trung điểm của <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>OB</mi></mstyle></math> (Đường thẳng đi qua trung điểm một<br />cạnh của tam gi&aacute;c v&agrave; song song với cạnh thứ hai th&igrave; đi qua trung điểm của cạnh thứ ba)<br />Mặt kh&aacute;c C l&agrave; trung điểm của AB (giả thiết)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>C</mi><mo>&#8290;</mo><mi>H</mi></mstyle></math> l&agrave; đường trung b&igrave;nh của tam gi&aacute;c ABO (dấu hiệu nhận biết đường trung b&igrave;nh của tam gi&aacute;c)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>C</mi><mo>&#8290;</mo><mi>H</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>O</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8901;</mo><mn>2</mn><mo>=</mo><mn>1</mn><mo>&#8290;</mo><mrow><mo>(</mo><mi>cm</mi><mo>)</mo></mrow></mstyle></math> (t&iacute;nh chất đường trung b&igrave;nh của tam gi&aacute;c)</p> <p>Điểm C c&aacute;ch tia Ox cố định một khoảng kh&ocirc;ng đổi 1cm n&ecirc;n C di chuyển tr&ecirc;n tia Em song song với Ox nằm trong <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>x</mi><mo>&#8290;</mo><mi>O</mi><mo>&#8290;</mo><mi>y</mi></mrow><mo>^</mo></mover></mstyle></math> v&agrave; c&aacute;ch Ox một khoảng bằng 1cm.</p> <p>&nbsp;</p> <p>&nbsp;</p>
Xem lời giải bài tập khác cùng bài