Bài 10: Đường Thẳng Song Song Với Một Đường Thẳng Cho Trước
Hướng dẫn giải Bài 71 (Trang 103 SGK Toán Hình học 8, Tập 1)
<p><strong class="content_question">Đề b&agrave;i</strong></p> <p>Cho tam gi&aacute;c&nbsp;<span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mi>C</mi></math></span></span>&nbsp;vu&ocirc;ng tại&nbsp;<span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math></span></span>. Lấy&nbsp;<span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math></span></span>&nbsp;l&agrave; một điểm bất k&igrave; thuộc cạnh&nbsp;<span id="MathJax-Element-4-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-12" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-13" class="mjx-mrow"><span id="MJXc-Node-14" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math></span></span>. Gọi&nbsp;<span id="MathJax-Element-5-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-16" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-17" class="mjx-mrow"><span id="MJXc-Node-18" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">M</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi></math></span></span>&nbsp;l&agrave; đường vu&ocirc;ng g&oacute;c kẻ từ&nbsp;<span id="MathJax-Element-6-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-20" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-21" class="mjx-mrow"><span id="MJXc-Node-22" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">M</span></span></span></span></span>&nbsp;đến&nbsp;<span id="MathJax-Element-7-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi></math></span></span>,&nbsp;<span id="MathJax-Element-8-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi><mi>E</mi></math></span></span> l&agrave; đường vu&ocirc;ng g&oacute;c kẻ từ M đến&nbsp;<span id="MathJax-Element-10-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>C</mi></math></span></span>,&nbsp;<span id="MathJax-Element-11-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi></math></span></span>&nbsp;l&agrave; trung điểm của&nbsp;<span id="MathJax-Element-12-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-41" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-42" class="mjx-mrow"><span id="MJXc-Node-43" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span><span id="MJXc-Node-44" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">E</span></span></span></span></span>.</p> <p>a) Chứng m&igrave;nh rằng ba điểm&nbsp;<span id="MathJax-Element-13-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-45" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-46" class="mjx-mrow"><span id="MJXc-Node-47" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-48" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-49" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">O</span></span><span id="MJXc-Node-50" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-51" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">M</span></span></span></span></span>&nbsp;thẳng h&agrave;ng.</p> <p>b) Khi điểm&nbsp;<span id="MathJax-Element-14-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-52" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-53" class="mjx-mrow"><span id="MJXc-Node-54" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">M</span></span></span></span></span>&nbsp;di chuyển tr&ecirc;n cạnh&nbsp;<span id="MathJax-Element-15-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mi>C</mi></math></span></span>&nbsp;th&igrave; điểm&nbsp;<span id="MathJax-Element-16-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-59" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-60" class="mjx-mrow"><span id="MJXc-Node-61" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">O</span></span></span></span></span>&nbsp;di chuyển tr&ecirc;n đường n&agrave;o ?</p> <p>c) Điểm&nbsp;<span id="MathJax-Element-17-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-62" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-63" class="mjx-mrow"><span id="MJXc-Node-64" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">M</span></span></span></span></span>&nbsp;ở vị tr&iacute; n&agrave;o tr&ecirc;n cạnh&nbsp;<span id="MathJax-Element-18-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-65" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-66" class="mjx-mrow"><span id="MJXc-Node-67" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-68" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span></span></span></span>&nbsp;th&igrave;&nbsp;<span id="MathJax-Element-19-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-69" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-70" class="mjx-mrow"><span id="MJXc-Node-71" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math></span></span>&nbsp;c&oacute; độ d&agrave;i nhỏ nhất?</p> <p><strong class="content_detail">Lời giải chi tiết</strong></p> <p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/05072022/hinh-bai-27-trand-72-sdk-toan-8-tap-2-mPLmgH.png" /></p> <p>a) Tứ gi&aacute;c ADME c&oacute;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>D</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi mathvariant="normal">E</mi></mrow><mo>^</mo></mover><mo>=</mo><mover accent="true"><mrow><mi>A</mi><mo>&#8290;</mo><mi>D</mi><mo>&#8290;</mo><mi>M</mi></mrow><mo>^</mo></mover><mo>=</mo><mover accent="true"><mrow><mi>A</mi><mo>&#8290;</mo><mi>EM</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>90</mn><mo>&#8728;</mo></msup></mstyle></math>(giả thiết)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo></mstyle></math> Tứ gi&aacute;c ADME l&agrave; h&igrave;nh chữ nhật (dấu hiệu nhận biết h&igrave;nh chữ nhật)<br />V&igrave; O l&agrave; trung điểm của đường ch&eacute;o DE (giả thiết)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>O</mi></mstyle></math> cũng l&agrave; trung điểm của AM (t&iacute;nh chất h&igrave;nh chữ nhật)<br />Vậy A, O, M thẳng h&agrave;ng.<br />b) Kẻ <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>H</mi><mo>&#10178;</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi></math>, kẻ <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>O</mi><mo>&#8290;</mo><mi>K</mi><mo>&#10178;</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi></mstyle></math><br />C&aacute;ch 1:<br />Ta c&oacute; OA=OM (do O l&agrave; trung điểm của AM)<br />OK//AH (do c&ugrave;ng vu&ocirc;ng g&oacute;c với BC).<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>K</mi></mstyle></math> l&agrave; trung điểm của MH (Đường thẳng đi qua trung điểm<br />một cạnh của tam gi&aacute;c v&agrave; song song với cạnh thứ hai th&igrave; đi qua trung điểm của cạnh thứ ba)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>O</mi><mo>&#8290;</mo><mi>K</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>H</mi></mstyle></math> (t&iacute;nh chất đường trung b&igrave;nh của tam gi&aacute;c)<br />Điểm O c&aacute;ch đoạn BC cố định một khoảng kh&ocirc;ng đổi bằng <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>H</mi></mstyle></math><br />Mặt kh&aacute;c khi M tr&ugrave;ng C th&igrave; O ch&iacute;nh l&agrave; trung điểm của AC, khi M tr&ugrave;ng B th&igrave; O ch&iacute;nh l&agrave; trung điểm của AB.</p> <p>Vậy O di chuyển tr&ecirc;n đoạn thẳng PQ l&agrave; đường trung b&igrave;nh của <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">&#9651;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi><mo>.</mo></math></p> <p>C&aacute;ch 2:<br />V&igrave; O l&agrave; trung điểm của AM n&ecirc;n HO l&agrave; trung tuyến ứng với cạnh huyền AM. Do đ&oacute; OA=OH. Suy ra điểm O di chuyển tr&ecirc;n đường trung trực của AH.</p> <p>Mặt kh&aacute;c v&igrave; M di chuyển tr&ecirc;n đoạn BC. Vậy điểm O di chuyển tr&ecirc;n đoạn thẳng PQ l&agrave; đường trung b&igrave;nh của ABC.<br />c) Ta c&oacute; AH l&agrave; đường cao hạ từ A đến BC do đ&oacute; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>A</mi><mo>&#8290;</mo><mi>M</mi><mo>&#8805;</mo><mi>A</mi><mo>&#8290;</mo><mi>H</mi></mstyle></math> (trong tam gi&aacute;c vu&ocirc;ng, cạnh huyền l&agrave; cạnh lớn nhất).<br />Vậy AM nhỏ nhất bằng AH khi M tr&ugrave;ng H.</p>
Xem lời giải bài tập khác cùng bài