Bài 6: Diện Tích Đa Giác
Hướng dẫn giải Bài 37 (Trang 130 SGK Toán Hình học 8, Tập 1)
<p><strong class="content_question">Đề b&agrave;i</strong></p> <p>Thực hiện c&aacute;c ph&eacute;p đo cần thiết (ch&iacute;nh x&aacute;c đến từng m) để t&iacute;nh diện t&iacute;ch h&igrave;nh <span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-1" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-4" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-5" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-6" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span><span id="MJXc-Node-7" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">E</span></span></span></span></span>&nbsp;(h.<span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mn&gt;152&lt;/mn&gt;&lt;/math&gt;"><span id="MJXc-Node-8" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-9" class="mjx-mrow"><span id="MJXc-Node-10" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">1</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>52</mn></math></span></span>).</p> <p><img src="https://img.loigiaihay.com/picture/2018/0716/b37-trang-130-sgk-toan-8-t-1-c2.jpg" /></p> <p>Lời giải chi tiết<br />Đa gi&aacute;c ABCDE được chia th&agrave;nh tam gi&aacute;c ABC, hai tam gi&aacute;c vu&ocirc;ng AHE, DKC v&agrave; h&igrave;nh thang vu&ocirc;ng HKDE.<br />Thực hiện ph&eacute;p đo ch&iacute;nh x&aacute;c đến mm ta được:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>G</mi><mo>=</mo><mn>19</mn><mo>⁢</mo><mi>m</mi><mo>⁢</mo><mi>m</mi><mo>,</mo><mi>A</mi><mo>⁢</mo><mi>C</mi><mo>=</mo><mn>48</mn><mo>⁢</mo><mi>m</mi><mo>⁢</mo><mi>m</mi><mo>,</mo><mi>A</mi><mo>⁢</mo><mi>H</mi><mo>=</mo><mn>8</mn><mo>⁢</mo><mi>m</mi><mo>⁢</mo><mi>m</mi><mo>,</mo><mi>H</mi><mo>⁢</mo><mi>K</mi><mo>=</mo><mn>18</mn><mo>⁢</mo><mi>m</mi><mo>⁢</mo><mpadded><mi>m</mi></mpadded><mo>⁢</mo><mspace linebreak="newline"></mspace><mo>⁢</mo><mi>K</mi><mo>⁢</mo><mi>C</mi><mo>=</mo><mn>22</mn><mo>⁢</mo><mi>m</mi><mo>⁢</mo><mi>m</mi><mo>,</mo><mi>E</mi><mo>⁢</mo><mi>H</mi><mo>=</mo><mn>16</mn><mo>⁢</mo><mi>m</mi><mo>⁢</mo><mi>m</mi><mo>,</mo><mi>K</mi><mo>⁢</mo><mi>D</mi><mo>=</mo><mn>23</mn><mo>⁢</mo><mi>m</mi><mo>⁢</mo><mpadded><mi>m</mi></mpadded><mo>⁢</mo><mspace linebreak="newline"></mspace><mo>⁢</mo><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mrow></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&sdot;</mo><mi>B</mi><mo>⁢</mo><mi>G</mi><mo>&sdot;</mo><mi>A</mi><mo>⁢</mo><mi>C</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&sdot;</mo><mn>19.48</mn><mo>=</mo><mn>456</mn><mo>⁢</mo><mrow><mo>(</mo><msup><mi>m</mi><mn>2</mn></msup><mo>)</mo></mrow><mo>⁢</mo><mspace linebreak="newline"></mspace><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>H</mi><mo>⁢</mo><mi>E</mi></mrow></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>H</mi><mo>.</mo><mi>H</mi><mo>⁢</mo><mi>E</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>⁢</mo><mn>8.16</mn><mo>=</mo><mn>64</mn><mo>⁢</mo><mrow><mo>(</mo><msup><mi>m</mi><mn>2</mn></msup><mo>)</mo></mrow><mo>⁢</mo><mspace linebreak="newline"></mspace><msub><mi>S</mi><mrow><mi>D</mi><mo>⁢</mo><mi>K</mi><mo>⁢</mo><mi>C</mi></mrow></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&sdot;</mo><mi>K</mi><mo>⁢</mo><mi>C</mi><mo>&sdot;</mo><mi>K</mi><mo>⁢</mo><mi>D</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&sdot;</mo><mn>22.23</mn><mo>=</mo><mn>253</mn><mo>⁢</mo><mrow><mo>(</mo><msup><mi>m</mi><mn>2</mn></msup><mo>)</mo></mrow><mo>⁢</mo><mspace linebreak="newline"></mspace><msub><mi>S</mi><mrow><mi>H</mi><mo>⁢</mo><mi>K</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>E</mi></mrow></msub><mo>=</mo><mfrac><mrow><mrow><mo>(</mo><mi>H</mi><mo>⁢</mo><mi>E</mi><mo>+</mo><mi>K</mi><mo>⁢</mo><mi>D</mi><mo>)</mo></mrow><mo>.</mo><mi>H</mi><mo>⁢</mo><mi>K</mi></mrow><mn>2</mn></mfrac><mo>=</mo><mfrac><mrow><mrow><mo>(</mo><mn>16</mn><mo>+</mo><mn>23</mn><mo>)</mo></mrow><mo>⁢</mo><mn>.18</mn></mrow><mn>2</mn></mfrac><mo>=</mo><mpadded><mn>351</mn></mpadded><mo>⁢</mo><mo>⁢</mo><mrow><mo>(</mo><mi>m</mi><mo>⁢</mo><msup><mi>m</mi><mn>2</mn></msup><mo>)</mo></mrow><mo>⁢</mo><mspace linebreak="newline"></mspace><mi>D</mi><mi>o</mi><mo>&nbsp;</mo><mi>đ</mi><mi>&oacute;</mi><mspace linebreak="newline"></mspace><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>E</mi></mrow></msub><mo>=</mo><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mrow></msub><mo>+</mo><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>H</mi><mo>⁢</mo><mi>E</mi></mrow></msub><mo>+</mo><mpadded><msub><mi>S</mi><mrow><mi>D</mi><mo>⁢</mo><mi>K</mi><mo>⁢</mo><mi>C</mi></mrow></msub></mpadded><mo>⁢</mo><mi mathvariant="normal">&amp;</mi><mo>+</mo><msub><mi>S</mi><mrow><mi>H</mi><mo>⁢</mo><mi>K</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>E</mi></mrow></msub><mo>=</mo><mn>456</mn><mo>+</mo><mn>64</mn><mo>+</mo><mn>253</mn><mo>+</mo><mn>351</mn><mo>=</mo><mn>1124</mn><mo>⁢</mo><mrow><mo>(</mo><mi>m</mi><mo>⁢</mo><msup><mi>m</mi><mn>2</mn></msup><mo>)</mo></mrow><mo>⁢</mo><mspace linebreak="newline"></mspace><mi>V</mi><mo>⁢</mo><mi>ậ</mi><mi>y</mi><mo>⁢</mo><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>E</mi></mrow></msub><mo>=</mo><mn>1124</mn><mo>⁢</mo><mrow><mo>(</mo><mi>m</mi><mo>⁢</mo><msup><mi>m</mi><mn>2</mn></msup><mo>)</mo></mrow><mo>⁢</mo><mn>15766</mn></math></p> <p>&nbsp;</p>
Xem lời giải bài tập khác cùng bài