Bài 4: Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh
<div data-v-a7c68f28=""> <div data-v-a7c68f28=""><span data-v-a7c68f28="">Hướng dẫn Giải Bài 4 (Trang 83 SGK Toán 7, Bộ Cánh diều, Tập 2)</span></div> </div>
<p><strong>B&agrave;i 4 (Trang 83 SGK To&aacute;n 7, Bộ C&aacute;nh diều, Tập 2)</strong></p> <p>Cho hai tam gi&aacute;c ABC v&agrave; MNP thoả m&atilde;n: AB = MN, BC = NP, AC = MP,&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>A</mi><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>65</mn><mo>&#176;</mo><mo>,</mo><mo>&#160;</mo><mover><mi>N</mi><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>71</mn><mo>&#176;</mo></math>. T&iacute;nh số đo c&aacute;c g&oacute;c c&ograve;n lại của hai tam gi&aacute;c.</p> <p>&nbsp;</p> <p><em><span style="text-decoration: underline;"><strong>Hướng dẫn giải</strong></span></em></p> <p>X&eacute;t ∆ABC&nbsp;v&agrave; ∆MNP c&oacute;:</p> <p>AB = MN (gt)</p> <p>BC = NP (gt)</p> <p>CA = PM (gt)</p> <p>Suy ra&nbsp;∆ABC = ∆MNP&nbsp;(c - c - c).</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mo>&#160;</mo><mover><mi>A</mi><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mover><mi>M</mi><mo>^</mo></mover><mo>,</mo><mo>&#160;</mo><mover><mi>B</mi><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mi>N</mi><mo>^</mo></mover><mo>,</mo><mo>&#160;</mo><mover><mi>C</mi><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mi>P</mi><mo>^</mo></mover></math> (2 g&oacute;c tương ứng)</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mo>&#160;</mo><mover><mi>M</mi><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>65</mn><mo>&#176;</mo><mo>,</mo><mo>&#160;</mo><mover><mi>B</mi><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>71</mn><mo>&#176;</mo></math></p> <p>&nbsp;</p> <p>X&eacute;t&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8710;</mo><mi>M</mi><mi>N</mi><mi>P</mi><mo>:</mo><mo>&#160;</mo><mover><mi>M</mi><mo>^</mo></mover><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mover><mi>N</mi><mo>^</mo></mover><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mover><mi>P</mi><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>180</mn><mo>&#176;</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mo>&#160;</mo><mover><mi>P</mi><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>180</mn><mo>&#176;</mo><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mover><mi>M</mi><mo>^</mo></mover><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mover><mi>N</mi><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>180</mn><mo>&#176;</mo><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>65</mn><mo>&#176;</mo><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>71</mn><mo>&#176;</mo><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>44</mn><mo>&#176;</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mo>&#160;</mo><mover><mi>C</mi><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mi>P</mi><mo>^</mo></mover><mo>&#160;</mo><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>44</mn><mo>&#176;</mo></math>&nbsp;</p> <p>Vậy&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>A</mi><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mi>M</mi><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>65</mn><mo>&#176;</mo><mo>;</mo><mo>&#160;</mo><mover><mi>B</mi><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mi>N</mi><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>71</mn><mo>&#176;</mo><mo>;</mo><mo>&#160;</mo><mover><mi>C</mi><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mi>P</mi><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>44</mn><mo>&#176;</mo></math></p>
Xem lời giải bài tập khác cùng bài