Bài 8: Đường vuông góc và đường xiên
Hướng dẫn Giải Bài 3 (Trang 99 SGK Toán 7, Bộ Cánh diều, Tập 2)
<p><strong>B&agrave;i 3 (Trang 99 SGK To&aacute;n 7, Bộ C&aacute;nh diều, Tập 2)</strong></p> <p>Cho tam gi&aacute;c nhọn ABC.</p> <p>a) Vẽ H l&agrave; h&igrave;nh chiếu của B tr&ecirc;n đường thẳng AC.</p> <p>b) Vẽ K l&agrave; h&igrave;nh chiếu của H tr&ecirc;n đường thẳng AB.</p> <p>c) Chứng minh rằng: HK &lt; BH &lt; BC.</p> <p>&nbsp;</p> <p><em><span style="text-decoration: underline;"><strong>Hướng dẫn giải</strong></span></em></p> <p>a)</p> <p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/12102022/a-zfxYVk.png" /></p> <p>&nbsp;</p> <p>b)</p> <p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/12102022/b-05TjwV.png" /></p> <p>&nbsp;</p> <p>c)&nbsp;</p> <p align="left"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8710;</mo></math>ABC c&oacute;:&nbsp;<span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mi mathvariant=&quot;normal&quot;&gt;&amp;#x22A5;&lt;/mi&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-25" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-26" class="mjx-mrow"><span id="MJXc-Node-27" class="mjx-mi"></span></span></span><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mi>H</mi><mo>&#160;</mo><mo>&#8869;</mo><mo>&#160;</mo><mi>A</mi><mi>C</mi><mo>&#160;</mo></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mi></mi></math></span><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo></math> BH &lt; BC (BH l&agrave; đường vu&ocirc;ng g&oacute;c, BC l&agrave; đường xi&ecirc;n).</p> <p align="left"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8710;</mo></math>AHB c&oacute;:&nbsp;<span id="MathJax-Element-4-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mi mathvariant=&quot;normal&quot;&gt;&amp;#x22A5;&lt;/mi&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-32" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-33" class="mjx-mrow"><span id="MJXc-Node-34" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">K</span></span><span id="MJXc-Node-35" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">H</span></span><span id="MJXc-Node-36" class="mjx-mi"><span class="mjx-char MJXc-TeX-main-R">&perp;</span></span><span id="MJXc-Node-37" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-38" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>K</mi><mi>H</mi><mi mathvariant="normal">&perp;</mi><mi>A</mi><mi>B</mi></math></span></span>&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo></math> HK &lt; HB (HK l&agrave; đường vu&ocirc;ng g&oacute;c, HB l&agrave; đường xi&ecirc;n).</p> <p align="left">Vậy:&nbsp;<em>HK &lt; BH &lt; BC</em>.</p>
Xem lời giải bài tập khác cùng bài