Hỏi gia sư
Gia sư 1-1
Chuyên đề
Trắc nghiệm
Tài liệu
Cửa hàng
Chọn lớp
Lớp 6
Lớp 7
Lớp 8
Lớp 9
Lớp 10
Lớp 11
Lớp 12
Đăng ký
Đăng nhập
Trang chủ
Hỏi gia sư
Gia sư 1-1
Chuyên đề
Trắc nghiệm
Tài liệu
Cửa hàng
Trang chủ
/
Giải bài tập
/ Lớp 11 / Toán học /
Bài 2. Dãy số
Bài 2. Dãy số
Hướng dẫn giải Bài 4 (Trang 92 SGK Toán Đại số & Giải tích 11)
<p>Xét tính tăng, giảm của các dãy số <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><msub><mi>u</mi><mi>n</mi></msub></mfenced></math>, biết:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>)</mo><mo> </mo><msub><mi>u</mi><mi>n</mi></msub><mo>=</mo><mfrac><mn>1</mn><mi>n</mi></mfrac><mo>-</mo><mn>2</mn><mo> </mo><mo>;</mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mi>b</mi><mo>)</mo><mo> </mo><msub><mi>u</mi><mi>n</mi></msub><mo>=</mo><mfrac><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo> </mo><mo>;</mo><mspace linebreak="newline"/><mi>c</mi><mo>)</mo><mo> </mo><msub><mi>u</mi><mi>n</mi></msub><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mi>n</mi></msup><mfenced><mrow><msup><mn>2</mn><mi>n</mi></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mo> </mo><mo>;</mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mi>d</mi><mo>)</mo><mo> </mo><msub><mi>u</mi><mi>n</mi></msub><mo>=</mo><mfrac><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>5</mn><mi>n</mi><mo>+</mo><mn>2</mn></mrow></mfrac><mo> </mo><mo>.</mo></math></p> <p><strong>Giải</strong> </p> <p>a) Ta có <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>-</mo><msub><mi>u</mi><mi>n</mi></msub><mo>=</mo><mfrac><mn>1</mn><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>-</mo><mn>2</mn><mo>-</mo><mfrac><mn>1</mn><mi>n</mi></mfrac><mo>+</mo><mn>2</mn><mo>=</mo><mfrac><mn>1</mn><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfrac><mo>-</mo><mfrac><mn>1</mn><mi>n</mi></mfrac><mo>=</mo><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mrow><mi>n</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mfrac><mo><</mo><mn>0</mn></math></p> <p> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><msub><mi>u</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo><</mo><msub><mi>u</mi><mi>n</mi></msub></math> với mọi <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℕ</mi><mo>*</mo></msup></math>.</p> <p> Vậy <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><msub><mi>u</mi><mi>n</mi></msub></mfenced></math> là dãy số giảm.</p> <p>b) Ta có: <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>n</mi></msub><mo>=</mo><mfrac><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>1</mn><mo>-</mo><mn>2</mn></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mn>1</mn><mo>-</mo><mfrac><mn>2</mn><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfrac></math></p> <p> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>-</mo><msub><mi>u</mi><mi>n</mi></msub><mo>=</mo><mn>1</mn><mo>-</mo><mfrac><mn>2</mn><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow></mfrac><mo>-</mo><mn>1</mn><mo>+</mo><mfrac><mn>2</mn><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mfrac><mn>2</mn><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>-</mo><mfrac><mn>2</mn><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow></mfrac><mo>></mo><mn>0</mn></math></p> <p> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><msub><mi>u</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>></mo><msub><mi>u</mi><mi>n</mi></msub><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo>∀</mo><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℕ</mi><mo>*</mo></msup></math>.</p> <p> Vậy <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><msub><mi>u</mi><mi>n</mi></msub></mfenced></math> là dãy số tăng.</p> <p>c) Ta có <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>1</mn></msub><mo>=</mo><mo>-</mo><mn>3</mn><mo>,</mo><mo> </mo><msub><mi>u</mi><mn>2</mn></msub><mo>=</mo><mn>5</mn><mo>,</mo><mo> </mo><msub><mi>u</mi><mn>3</mn></msub><mo>=</mo><mo>-</mo><mn>9</mn></math>, vì <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>1</mn></msub><mo><</mo><msub><mi>u</mi><mn>2</mn></msub><mo>></mo><msub><mi>u</mi><mn>3</mn></msub></math> nên <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>n</mi></msub></math> là dãy không tăng, không giảm.</p> <p>d) Ta có: <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>u</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><msub><mi>u</mi><mi>n</mi></msub></mfrac><mo>=</mo><mfrac><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>3</mn></mrow><mrow><mn>5</mn><mi>n</mi><mo>+</mo><mn>7</mn></mrow></mfrac><mo>.</mo><mfrac><mrow><mn>5</mn><mi>n</mi><mo>+</mo><mn>2</mn></mrow><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>10</mn><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>19</mn><mi>n</mi><mo>+</mo><mn>6</mn></mrow><mrow><mn>10</mn><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>19</mn><mi>n</mi><mo>+</mo><mn>7</mn></mrow></mfrac><mo><</mo><mn>1</mn></math></p> <p> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><msub><mi>u</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo><</mo><msub><mi>u</mi><mrow><mi>n</mi><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo></mrow></msub><mo>∀</mo><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℕ</mi><mo>*</mo></msup></math></p> <p> Vậy <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><msub><mi>u</mi><mi>n</mi></msub></mfenced></math> là dãy số giảm.</p> <p> </p>
Hướng dẫn Giải Bài 4ab (trang 92, SGK Toán Đại số & Giải Tích 11)
GV:
GV colearn
Xem lời giải bài tập khác cùng bài
Hướng dẫn giải Bài 1 (Trang 92 SGK Toán Đại số & Giải tích 11)
Xem lời giải
Hướng dẫn giải Bài 2 (Trang 92 SGK Toán Đại số & Giải tích 11)
Xem lời giải
Hướng dẫn giải Bài 3 (Trang 92 SGK Toán Đại số & Giải tích 11)
Xem lời giải
Hướng dẫn giải Bài 5 (Trang 92 SGK Toán Đại số & Giải tích 11)
Xem lời giải
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 4ab (trang 92, SGK Toán Đại số & Giải Tích 11)
GV:
GV colearn