Hoạt động (Trang 19 SGK Vật lý 10, Bộ Kết nối tri thức với cuộc sống)
<p><strong>Hoạt động (Trang 19 SGK Vật lí 10, Bộ Kết Nối Tri Thức):</strong></p>
<p>Dùng một thước có ĐCNN là 1 mm và một đồng hồ đo thời gian có ĐCNN 0,01 s</p>
<p>để đo 5 lần thời gian chuyển động của chiếc xe đồ chơi chạy bằng pin từ điểm A (v<sub>A</sub> = 0)</p>
<p>đến điểm B (Hình 3.1). Ghi các giá trị vào Bảng 3.1 và trả lời các câu hỏi.</p>
<p><img src="https://vietjack.com/vat-li-10-kn/images/hoat-dong-trang-19-vat-li-10.PNG" alt="Dùng một thước có ĐCNN là 1 mm và một đồng hồ đo thời gian có ĐCNN 0,01 s để đo 5 lần" width="539" height="172" /></p>
<p>a) Nguyên nhân nào gây ra sự sai khác giữa các lần đo?</p>
<p>b) Tính sai số tuyệt đối của phép đo s, t và điền vào Bảng 3.1.</p>
<p>c) Viết kết quả đo: s = ............. ; t = ................</p>
<p>d) Tính sai số tỉ đối:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">δ</mi><mi mathvariant="bold-italic">t</mi><mo mathvariant="bold-italic">=</mo><mfrac><mrow><mo mathvariant="bold-italic">∆</mo><mi mathvariant="bold-italic">t</mi></mrow><mi mathvariant="bold-italic">t</mi></mfrac><mo mathvariant="bold-italic">.</mo><mn mathvariant="bold-italic">100</mn><mo mathvariant="bold-italic">%</mo><mo mathvariant="bold-italic">=</mo><mo mathvariant="bold-italic">.</mo><mo mathvariant="bold-italic">.</mo><mo mathvariant="bold-italic">.</mo><mo mathvariant="bold-italic">;</mo><mo mathvariant="bold-italic"> </mo><mo mathvariant="bold-italic"> </mo><mo mathvariant="bold-italic"> </mo><mi mathvariant="bold-italic">δ</mi><mi mathvariant="bold-italic">s</mi><mo mathvariant="bold-italic">=</mo><mfrac><mrow><mo mathvariant="bold-italic">∆</mo><mi mathvariant="bold-italic">s</mi></mrow><mi mathvariant="bold-italic">s</mi></mfrac><mo mathvariant="bold-italic">.</mo><mn mathvariant="bold-italic">100</mn><mo mathvariant="bold-italic">%</mo><mo mathvariant="bold-italic">=</mo><mo mathvariant="bold-italic">.</mo><mo mathvariant="bold-italic">.</mo><mo mathvariant="bold-italic">.</mo><mspace linebreak="newline"></mspace><mi mathvariant="bold-italic">δ</mi><mi mathvariant="bold-italic">v</mi><mo mathvariant="bold-italic">=</mo><mo mathvariant="bold-italic">.</mo><mo mathvariant="bold-italic">.</mo><mo mathvariant="bold-italic">.</mo><mo mathvariant="bold-italic">;</mo><mo mathvariant="bold-italic"> </mo><mo mathvariant="bold-italic">∆</mo><mi mathvariant="bold-italic">v</mi><mo mathvariant="bold-italic">=</mo><mo mathvariant="bold-italic">.</mo><mo mathvariant="bold-italic">.</mo><mo mathvariant="bold-italic">.</mo></math></p>
<p> </p>
<p><span style="text-decoration: underline;"><em><strong>Hướng dẫn giải:</strong></em></span></p>
<p>Số liệu tham khảo</p>
<p>Bảng 3.1</p>
<div style="text-align: left;" align="center">
<table style="height: 392px; width: 53.7859%;" border="1" cellspacing="0" cellpadding="0">
<tbody>
<tr>
<td style="text-align: center; width: 16.667%;" valign="top" width="20%">
<p>n</p>
</td>
<td style="text-align: center; width: 20.3708%;" valign="top" width="20%">
<p>s (m)</p>
</td>
<td style="text-align: center; width: 22.2227%;" valign="top" width="20%">
<p>∆s (m)</p>
</td>
<td style="text-align: center; width: 19.3737%;" valign="top" width="20%">
<p>t (s)</p>
</td>
<td style="text-align: center; width: 21.2255%;" valign="top" width="20%">
<p>∆t (m)</p>
</td>
</tr>
<tr>
<td style="text-align: center; width: 16.667%;" valign="top" width="20%">
<p>1</p>
</td>
<td style="text-align: center; width: 20.3708%;" valign="top" width="20%">
<p>0,649</p>
</td>
<td style="text-align: center; width: 22.2227%;" valign="top" width="20%">
<p>0,0024</p>
</td>
<td style="text-align: center; width: 19.3737%;" valign="top" width="20%">
<p>3,49</p>
</td>
<td style="text-align: center; width: 21.2255%;" valign="top" width="20%">
<p>0,024</p>
</td>
</tr>
<tr>
<td style="text-align: center; width: 16.667%;" valign="top" width="20%">
<p>2</p>
</td>
<td style="text-align: center; width: 20.3708%;" valign="top" width="20%">
<p>0,651</p>
</td>
<td style="text-align: center; width: 22.2227%;" valign="top" width="20%">
<p>0,0004</p>
</td>
<td style="text-align: center; width: 19.3737%;" valign="top" width="20%">
<p>3,51</p>
</td>
<td style="text-align: center; width: 21.2255%;" valign="top" width="20%">
<p>0,004</p>
</td>
</tr>
<tr>
<td style="text-align: center; width: 16.667%;" valign="top" width="20%">
<p>3</p>
</td>
<td style="text-align: center; width: 20.3708%;" valign="top" width="20%">
<p>0,654</p>
</td>
<td style="text-align: center; width: 22.2227%;" valign="top" width="20%">
<p>0,0026</p>
</td>
<td style="text-align: center; width: 19.3737%;" valign="top" width="20%">
<p>3,54</p>
</td>
<td style="text-align: center; width: 21.2255%;" valign="top" width="20%">
<p>0,026</p>
</td>
</tr>
<tr>
<td style="text-align: center; width: 16.667%;" valign="top" width="20%">
<p>4</p>
</td>
<td style="text-align: center; width: 20.3708%;" valign="top" width="20%">
<p>0,653</p>
</td>
<td style="text-align: center; width: 22.2227%;" valign="top" width="20%">
<p>0,0016</p>
</td>
<td style="text-align: center; width: 19.3737%;" valign="top" width="20%">
<p>3,53</p>
</td>
<td style="text-align: center; width: 21.2255%;" valign="top" width="20%">
<p>0,016</p>
</td>
</tr>
<tr>
<td style="text-align: center; width: 16.667%;" valign="top" width="20%">
<p>5</p>
</td>
<td style="text-align: center; width: 20.3708%;" valign="top" width="20%">
<p>0,650</p>
</td>
<td style="text-align: center; width: 22.2227%;" valign="top" width="20%">
<p>0,0014</p>
</td>
<td style="text-align: center; width: 19.3737%;" valign="top" width="20%">
<p>3,50</p>
</td>
<td style="text-align: center; width: 21.2255%;" valign="top" width="20%">
<p>0,014</p>
</td>
</tr>
<tr>
<td style="text-align: center; width: 16.667%;" valign="top" width="20%">
<p>Trung bình</p>
</td>
<td style="text-align: center; width: 20.3708%;" valign="top" width="20%">
<p><span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mi>s</mi><mo>&#xAF;</mo></mover></math>"><span id="MJXc-Node-43" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-44" class="mjx-mrow"><span id="MJXc-Node-45" class="mjx-mover"><span class="mjx-stack"><span class="mjx-over"><span id="MJXc-Node-47" class="mjx-mo"></span></span></span></span></span></span></span><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>s</mi><mo>¯</mo></mover><mo>=</mo><mn>0</mn><mo>,</mo><mn>6514</mn></math></p>
</td>
<td style="text-align: center; width: 22.2227%;" valign="top" width="20%">
<p><span id="MathJax-Element-4-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>&#x394;</mi><mi>s</mi></mrow><mo>&#xAF;</mo></mover></math>"><span id="MJXc-Node-48" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-49" class="mjx-mrow"><span id="MJXc-Node-50" class="mjx-mover"><span class="mjx-stack"><span class="mjx-over"><span id="MJXc-Node-54" class="mjx-mo"></span></span></span></span></span></span></span><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mo>∆</mo><mi>s</mi></mrow><mo>¯</mo></mover><mo>=</mo><mn>0</mn><mo>,</mo><mn>00168</mn></math></p>
</td>
<td style="text-align: center; width: 19.3737%;" valign="top" width="20%">
<p><span id="MathJax-Element-5-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mi>t</mi><mo>&#xAF;</mo></mover></math>"><span id="MJXc-Node-55" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-56" class="mjx-mrow"><span id="MJXc-Node-57" class="mjx-mover"><span class="mjx-stack"><span class="mjx-over"><span id="MJXc-Node-59" class="mjx-mo"></span></span></span></span></span></span></span><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>t</mi><mo>¯</mo></mover><mo>=</mo><mn>3</mn><mo>,</mo><mn>514</mn></math></p>
</td>
<td style="text-align: center; width: 21.2255%;" valign="top" width="20%">
<p><span id="MathJax-Element-6-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>&#x394;</mi><mi>t</mi></mrow><mo>&#xAF;</mo></mover></math>"><span id="MJXc-Node-60" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-61" class="mjx-mrow"><span id="MJXc-Node-62" class="mjx-mover"><span class="mjx-stack"><span class="mjx-over"><span id="MJXc-Node-66" class="mjx-mo"></span></span></span></span></span></span></span><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mo>∆</mo><mi>t</mi></mrow><mo>¯</mo></mover><mo>=</mo><mn>0</mn><mo>,</mo><mn>0168</mn></math></p>
</td>
</tr>
</tbody>
</table>
</div>
<p>a) Nguyên nhân gây ra sự sai khác giữa các lần đo là do:</p>
<p>- Sai số hệ thống do dụng cụ đo.</p>
<p>- Điều kiện làm thí nghiệm chưa được chuẩn.</p>
<p>- Thao tác khi đo chưa chính xác.</p>
<p>b)</p>
<p><strong>*Phép đo s</strong></p>
<p>Giá trị trung bình của quãng đường:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi mathvariant="normal">S</mi><mo>¯</mo></mover><mo> </mo><mo>=</mo><mo> </mo><mfrac><mrow><msub><mi mathvariant="normal">S</mi><mn>1</mn></msub><mo> </mo><mo>+</mo><mo> </mo><msub><mi mathvariant="normal">S</mi><mn>2</mn></msub><mo> </mo><mo>+</mo><mo> </mo><msub><mi mathvariant="normal">S</mi><mn>3</mn></msub><mo> </mo><mo>+</mo><mo> </mo><msub><mi mathvariant="normal">S</mi><mn>4</mn></msub><mo> </mo><mo>+</mo><mo> </mo><msub><mi mathvariant="normal">S</mi><mn>5</mn></msub></mrow><mn>5</mn></mfrac><mo> </mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo> </mo><mfrac><mrow><mn>0</mn><mo>,</mo><mn>649</mn><mo> </mo><mo>+</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>651</mn><mo> </mo><mo>+</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>654</mn><mo> </mo><mo>+</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>653</mn><mo> </mo><mo>+</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>650</mn></mrow><mn>5</mn></mfrac><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>6514</mn><mo> </mo><mo>(</mo><mi mathvariant="normal">m</mi><mo>)</mo></math></p>
<p>Sai số ngẫu nhiên tuyệt đối của từng lần đo:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msub><mi mathvariant="normal">S</mi><mn>1</mn></msub><mo> </mo><mo>=</mo><mo> </mo><mfenced open="|" close="|"><mrow><mover><mi mathvariant="normal">S</mi><mo>¯</mo></mover><mo> </mo><mo>-</mo><mo> </mo><msub><mi mathvariant="normal">S</mi><mn>1</mn></msub></mrow></mfenced><mo> </mo><mo>=</mo><mo> </mo><mfenced open="|" close="|"><mrow><mn>0</mn><mo>,</mo><mn>6514</mn><mo> </mo><mo>-</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>649</mn></mrow></mfenced><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>0024</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msub><mi mathvariant="normal">S</mi><mn>2</mn></msub><mo> </mo><mo>=</mo><mo> </mo><mfenced open="|" close="|"><mrow><mover><mi mathvariant="normal">S</mi><mo>¯</mo></mover><mo> </mo><mo>-</mo><mo> </mo><msub><mi mathvariant="normal">S</mi><mn>2</mn></msub></mrow></mfenced><mo> </mo><mo>=</mo><mo> </mo><mfenced open="|" close="|"><mrow><mn>0</mn><mo>,</mo><mn>6514</mn><mo> </mo><mo>-</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>651</mn></mrow></mfenced><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>0004</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msub><mi mathvariant="normal">S</mi><mn>3</mn></msub><mo> </mo><mo>=</mo><mo> </mo><mfenced open="|" close="|"><mrow><mover><mi mathvariant="normal">S</mi><mo>¯</mo></mover><mo> </mo><mo>-</mo><mo> </mo><msub><mi mathvariant="normal">S</mi><mn>3</mn></msub></mrow></mfenced><mo> </mo><mo>=</mo><mo> </mo><mfenced open="|" close="|"><mrow><mn>0</mn><mo>,</mo><mn>6514</mn><mo> </mo><mo>-</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>654</mn></mrow></mfenced><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>0026</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msub><mi mathvariant="normal">S</mi><mn>4</mn></msub><mo> </mo><mo>=</mo><mo> </mo><mfenced open="|" close="|"><mrow><mover><mi mathvariant="normal">S</mi><mo>¯</mo></mover><mo> </mo><mo>-</mo><mo> </mo><msub><mi mathvariant="normal">S</mi><mn>4</mn></msub></mrow></mfenced><mo> </mo><mo>=</mo><mo> </mo><mfenced open="|" close="|"><mrow><mn>0</mn><mo>,</mo><mn>6514</mn><mo> </mo><mo>-</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>653</mn></mrow></mfenced><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>0016</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msub><mi mathvariant="normal">S</mi><mn>5</mn></msub><mo> </mo><mo>=</mo><mo> </mo><mfenced open="|" close="|"><mrow><mover><mi mathvariant="normal">S</mi><mo>¯</mo></mover><mo> </mo><mo>-</mo><mo> </mo><msub><mi mathvariant="normal">S</mi><mn>5</mn></msub></mrow></mfenced><mo> </mo><mo>=</mo><mo> </mo><mfenced open="|" close="|"><mrow><mn>0</mn><mo>,</mo><mn>6514</mn><mo> </mo><mo>-</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>650</mn></mrow></mfenced><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>0014</mn></math></p>
<p>Sai số ngẫu nhiên tuyệt đối trung bình của 5 lần đo: <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mo>∆</mo><mi mathvariant="normal">S</mi></mrow><mo>¯</mo></mover><mo> </mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo> </mo><mfrac><mrow><mo>∆</mo><msub><mi mathvariant="normal">S</mi><mn>1</mn></msub><mo> </mo><mo>+</mo><mo> </mo><mo>∆</mo><msub><mi mathvariant="normal">S</mi><mn>2</mn></msub><mo> </mo><mo>+</mo><mo> </mo><mo>∆</mo><msub><mi mathvariant="normal">S</mi><mn>3</mn></msub><mo> </mo><mo>+</mo><mo> </mo><mo>∆</mo><msub><mi mathvariant="normal">S</mi><mn>4</mn></msub><mo> </mo><mo>+</mo><mo> </mo><mo>∆</mo><msub><mi mathvariant="normal">S</mi><mn>5</mn></msub></mrow><mn>5</mn></mfrac><mo> </mo><mo>=</mo><mo> </mo><mfrac><mrow><mn>0</mn><mo>,</mo><mn>0024</mn><mo> </mo><mo>+</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>0026</mn><mo> </mo><mo>+</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>0016</mn><mo> </mo><mo>+</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>0014</mn></mrow><mn>5</mn></mfrac><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>00168</mn></math></p>
<p>Sai số tuyệt đối của phép đo quãng đường là: <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><mi mathvariant="normal">S</mi><mo> </mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo> </mo><mover><mrow><mo>∆</mo><mi mathvariant="normal">S</mi></mrow><mo>¯</mo></mover><mo> </mo><mo>+</mo><mo> </mo><mo>∆</mo><msub><mi mathvariant="normal">S</mi><mi>dc</mi></msub><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>00168</mn><mo> </mo><mo>+</mo><mo> </mo><mfrac><mrow><mn>0</mn><mo>,</mo><mn>001</mn></mrow><mn>2</mn></mfrac><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>00218</mn></math></p>
<p><strong>*Phép đo t</strong></p>
<p>- Giá trị trung bình của thời gian chuyển động: <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi mathvariant="normal">t</mi><mo>¯</mo></mover></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo> </mo><mfrac><mrow><msub><mi mathvariant="normal">t</mi><mn>1</mn></msub><mo> </mo><mo>+</mo><mo> </mo><msub><mi mathvariant="normal">t</mi><mn>2</mn></msub><mo> </mo><mo>+</mo><mo> </mo><msub><mi mathvariant="normal">t</mi><mn>3</mn></msub><mo> </mo><mo>+</mo><mo> </mo><msub><mi mathvariant="normal">t</mi><mn>4</mn></msub><mo> </mo><mo>+</mo><mo> </mo><msub><mi mathvariant="normal">t</mi><mn>5</mn></msub></mrow><mn>5</mn></mfrac><mo> </mo><mo>=</mo><mo> </mo><mfrac><mrow><mn>3</mn><mo>,</mo><mn>49</mn><mo> </mo><mo>+</mo><mo> </mo><mn>3</mn><mo>,</mo><mn>51</mn><mo> </mo><mo>+</mo><mo> </mo><mn>3</mn><mo>,</mo><mn>54</mn><mo> </mo><mo>+</mo><mo> </mo><mn>3</mn><mo>,</mo><mn>53</mn><mo> </mo><mo>+</mo><mo> </mo><mn>3</mn><mo>,</mo><mn>50</mn></mrow><mrow><mo> </mo><mn>5</mn></mrow></mfrac><mo> </mo><mo>=</mo><mo> </mo><mn>3</mn><mo>,</mo><mn>514</mn><mo> </mo><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo></math></p>
<p>- Sai số ngẫu nhiên tuyệt đối của từng lần đo:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msub><mi mathvariant="normal">t</mi><mn>1</mn></msub><mo> </mo><mo>=</mo><mo> </mo><mfenced open="|" close="|"><mrow><mover><mi mathvariant="normal">t</mi><mo>¯</mo></mover><mo> </mo><mo>-</mo><mo> </mo><msub><mi mathvariant="normal">t</mi><mn>1</mn></msub></mrow></mfenced><mo> </mo><mo>=</mo><mo> </mo><mfenced open="|" close="|"><mrow><mn>3</mn><mo>,</mo><mn>514</mn><mo> </mo><mo>-</mo><mo> </mo><mn>3</mn><mo>,</mo><mn>49</mn></mrow></mfenced><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>024</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msub><mi mathvariant="normal">t</mi><mn>2</mn></msub><mo> </mo><mo>=</mo><mo> </mo><mfenced open="|" close="|"><mrow><mover><mi mathvariant="normal">t</mi><mo>¯</mo></mover><mo> </mo><mo>-</mo><mo> </mo><msub><mi mathvariant="normal">t</mi><mn>2</mn></msub></mrow></mfenced><mo> </mo><mo>=</mo><mo> </mo><mfenced open="|" close="|"><mrow><mn>3</mn><mo>,</mo><mn>514</mn><mo> </mo><mo>-</mo><mo> </mo><mn>3</mn><mo>,</mo><mn>51</mn></mrow></mfenced><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>004</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msub><mi mathvariant="normal">t</mi><mn>3</mn></msub><mo> </mo><mo>=</mo><mo> </mo><mfenced open="|" close="|"><mrow><mover><mi mathvariant="normal">t</mi><mo>¯</mo></mover><mo> </mo><mo>-</mo><mo> </mo><msub><mi mathvariant="normal">t</mi><mn>3</mn></msub></mrow></mfenced><mo> </mo><mo>=</mo><mo> </mo><mfenced open="|" close="|"><mrow><mn>3</mn><mo>,</mo><mn>514</mn><mo> </mo><mo>-</mo><mo> </mo><mn>3</mn><mo>,</mo><mn>54</mn></mrow></mfenced><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>026</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msub><mi mathvariant="normal">t</mi><mn>4</mn></msub><mo> </mo><mo>=</mo><mo> </mo><mfenced open="|" close="|"><mrow><mover><mi mathvariant="normal">t</mi><mo>¯</mo></mover><mo> </mo><mo>-</mo><mo> </mo><msub><mi mathvariant="normal">t</mi><mn>4</mn></msub></mrow></mfenced><mo> </mo><mo>=</mo><mo> </mo><mfenced open="|" close="|"><mrow><mn>3</mn><mo>,</mo><mn>514</mn><mo> </mo><mo>-</mo><mo> </mo><mn>3</mn><mo>,</mo><mn>53</mn></mrow></mfenced><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>016</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msub><mi mathvariant="normal">t</mi><mn>5</mn></msub><mo> </mo><mo>=</mo><mo> </mo><mfenced open="|" close="|"><mrow><mover><mi mathvariant="normal">t</mi><mo>¯</mo></mover><mo> </mo><mo>-</mo><mo> </mo><msub><mi mathvariant="normal">t</mi><mn>5</mn></msub></mrow></mfenced><mo> </mo><mo>=</mo><mo> </mo><mfenced open="|" close="|"><mrow><mn>3</mn><mo>,</mo><mn>514</mn><mo> </mo><mo>-</mo><mo> </mo><mn>3</mn><mo>,</mo><mn>50</mn></mrow></mfenced><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>014</mn></math></p>
<p>-Sai số ngẫu nhiên tuyệt đối trung bình của 5 lần đo:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mo>∆</mo><mi mathvariant="normal">t</mi></mrow><mo>¯</mo></mover><mo> </mo><mo>=</mo><mo> </mo><mfrac><mrow><mo>∆</mo><msub><mi mathvariant="normal">t</mi><mn>1</mn></msub><mo> </mo><mo>+</mo><mo> </mo><mo>∆</mo><msub><mi mathvariant="normal">t</mi><mn>2</mn></msub><mo> </mo><mo>+</mo><mo> </mo><mo>∆</mo><msub><mi mathvariant="normal">t</mi><mn>3</mn></msub><mo> </mo><mo>+</mo><mo> </mo><mo>∆</mo><msub><mi mathvariant="normal">t</mi><mn>4</mn></msub><mo> </mo><mo>+</mo><mo> </mo><mo>∆</mo><msub><mi mathvariant="normal">t</mi><mn>5</mn></msub></mrow><mn>5</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo> </mo><mfrac><mrow><mn>0</mn><mo>,</mo><mn>024</mn><mo> </mo><mo>+</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>004</mn><mo> </mo><mo>+</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>026</mn><mo> </mo><mo>+</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>016</mn><mo> </mo><mo>+</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>014</mn></mrow><mn>5</mn></mfrac><mo> </mo><mo>=</mo><mo> </mo><mfrac><mrow><mn>0</mn><mo>,</mo><mn>084</mn></mrow><mn>5</mn></mfrac><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>0168</mn></math></p>
<p>- Sai số tuyệt đối của phép đo thời gian là:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><mi mathvariant="normal">t</mi><mo> </mo><mo>=</mo><mo> </mo><mover><mrow><mo>∆</mo><mi mathvariant="normal">t</mi></mrow><mo>¯</mo></mover><mo> </mo><mo>+</mo><mo> </mo><mo>∆</mo><msub><mi mathvariant="normal">t</mi><mi>dc</mi></msub><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>0168</mn><mo> </mo><mo>+</mo><mo> </mo><mfrac><mrow><mn>0</mn><mo>,</mo><mn>01</mn></mrow><mn>2</mn></mfrac><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>0218</mn></math> (s)</p>
<p>c) Viết kết quả đo</p>
<p>- Phép đo s: <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">s</mi><mo> </mo><mo>=</mo><mo> </mo><mover><mi mathvariant="normal">s</mi><mo>¯</mo></mover><mo> </mo><mo>±</mo><mo>∆</mo><mi mathvariant="normal">s</mi><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>6514</mn><mo> </mo><mo>±</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>00218</mn><mo> </mo><mo>(</mo><mi mathvariant="normal">m</mi><mo>)</mo></math></p>
<p>- Phép đo t: <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">t</mi><mo> </mo><mo>=</mo><mo> </mo><mover><mi mathvariant="normal">t</mi><mo>¯</mo></mover><mo> </mo><mo>±</mo><mo>∆</mo><mi mathvariant="normal">t</mi><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>6514</mn><mo> </mo><mo>±</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>00218</mn><mo> </mo><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo></math></p>
<p>d)</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>δt</mi><mo> </mo><mo>=</mo><mo> </mo><mfrac><mrow><mo>∆</mo><mi mathvariant="normal">t</mi></mrow><mi mathvariant="normal">t</mi></mfrac><mo>.</mo><mn>100</mn><mo>%</mo><mo> </mo><mo>=</mo><mo> </mo><mfrac><mrow><mn>0</mn><mo>,</mo><mn>0218</mn></mrow><mrow><mn>3</mn><mo>,</mo><mn>514</mn></mrow></mfrac><mo>.</mo><mn>100</mn><mo>%</mo><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>620</mn><mo>%</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>δs</mi><mo> </mo><mo>=</mo><mo> </mo><mfrac><mrow><mo>∆</mo><mi mathvariant="normal">s</mi></mrow><mi mathvariant="normal">s</mi></mfrac><mo>.</mo><mn>100</mn><mo>%</mo><mo> </mo><mo>=</mo><mo> </mo><mfrac><mrow><mn>0</mn><mo>,</mo><mn>00218</mn></mrow><mrow><mn>0</mn><mo>,</mo><mn>6514</mn></mrow></mfrac><mo>.</mo><mn>100</mn><mo>%</mo><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>335</mn><mo>%</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>δv</mi><mo> </mo><mo>=</mo><mo> </mo><mfrac><mrow><mo>∆</mo><mi mathvariant="normal">s</mi></mrow><mi>ts</mi></mfrac><mo>.</mo><mn>100</mn><mo>%</mo><mo> </mo><mo>+</mo><mo> </mo><mfrac><mrow><mo>∆</mo><mi mathvariant="normal">t</mi></mrow><mi mathvariant="normal">t</mi></mfrac><mo>.</mo><mn>100</mn><mo>%</mo><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>335</mn><mo>%</mo><mo> </mo><mo>+</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>620</mn><mo>%</mo><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>955</mn><mo>%</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><mi mathvariant="normal">v</mi><mo> </mo><mo>=</mo><mo> </mo><mi>δv</mi><mo>.</mo><mover><mi mathvariant="normal">v</mi><mo>¯</mo></mover><mo> </mo><mo>=</mo><mo> </mo><mi>δv</mi><mo>.</mo><mfrac><mover><mi mathvariant="normal">s</mi><mo>¯</mo></mover><mi mathvariant="normal">t</mi></mfrac><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>955</mn><mo>.</mo><mfrac><mrow><mn>0</mn><mo>,</mo><mn>6514</mn></mrow><mrow><mn>3</mn><mo>,</mo><mn>514</mn></mrow></mfrac><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>177</mn><mo> </mo><mo>(</mo><mi mathvariant="normal">m</mi><mo>/</mo><mi mathvariant="normal">s</mi><mo>)</mo></math></p>