Trang chủ / Giải bài tập / Lớp 9 / Toán học / Bài 5: Hệ số góc của đường thẳng <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi><mo> </mo><mfenced><mrow><mi>a</mi><mo> </mo><mo>≠</mo><mn>0</mn></mrow></mfenced></math>
Bài 5: Hệ số góc của đường thẳng <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi><mo> </mo><mfenced><mrow><mi>a</mi><mo> </mo><mo>≠</mo><mn>0</mn></mrow></mfenced></math>
Hướng dẫn giải Bài 31 (Trang 59 SGK Toán 9, Tập 1)
<p><strong>Bài 31 (Trang 59 SGK Toán 9, Tập 1):</strong></p>
<p>a) Vẽ đồ thị của các hàm số <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">y</mi><mo> </mo><mo>=</mo><mo> </mo><mi mathvariant="normal">x</mi><mo> </mo><mo>+</mo><mo> </mo><mn>1</mn><mo>;</mo><mo> </mo><mi mathvariant="normal">y</mi><mo> </mo><mo>=</mo><mo> </mo><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac><mi mathvariant="normal">x</mi><mo> </mo><mo>+</mo><mo> </mo><msqrt><mn>3</mn></msqrt><mo>;</mo><mo> </mo><mi mathvariant="normal">y</mi><mo> </mo><mo>=</mo><mo> </mo><msqrt><mn>3</mn></msqrt><mi mathvariant="normal">x</mi><mo> </mo><mo>-</mo><mo> </mo><msqrt><mn>3</mn></msqrt><mo>.</mo></math></p>
<p>b) Gọi <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">α</mi><mo>,</mo><mo> </mo><mi mathvariant="normal">β</mi><mo>,</mo><mo> </mo><mi mathvariant="normal">γ</mi></math> lần lượt là các góc tạo bởi các đường thẳng trên và trục Ox.</p>
<p>Chứng minh rằng: <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mi>g</mi><mi>α</mi><mo> </mo><mo>=</mo><mo> </mo><mn>1</mn><mo>,</mo><mo> </mo><mi>t</mi><mi>g</mi><mi>β</mi><mo> </mo><mo>=</mo><mo> </mo><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac><mo>,</mo><mo> </mo><mi>t</mi><mi>g</mi><mi>γ</mi><mo> </mo><mo>=</mo><mo> </mo><msqrt><mn>3</mn></msqrt><mo>.</mo></math></p>
<p>Tính số đo các góc <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>,</mo><mo> </mo><mi>β</mi><mo>,</mo><mo> </mo><mi>γ</mi></math>.</p>
<p> </p>
<p><strong><span style="text-decoration: underline;"><em>Hướng dẫn giải:</em></span></strong></p>
<p>a)</p>
<p>- Vẽ đồ thị hàm số y = x + 1</p>
<p>Cho x = 0 => y = 1 => Ta có điểm A(0;1)</p>
<p>Cho y = 0 => x = -1 => Ta có điểm B(-1;0)</p>
<p>Đồ thị hàm số y = x + 1 là đường thẳng đi qua điểm A và B.</p>
<p>- Vẽ đồ thị hàm số <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo> </mo><mo>=</mo><mo> </mo><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac><mi>x</mi><mo> </mo><mo>+</mo><mo> </mo><msqrt><mn>3</mn></msqrt></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Cho</mi><mo> </mo><mi mathvariant="normal">x</mi><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo> </mo><mo>=</mo><mo>></mo><mo> </mo><mi mathvariant="normal">y</mi><mo> </mo><mo>=</mo><mo> </mo><msqrt><mn>3</mn></msqrt><mo> </mo><mo>=</mo><mo>></mo><mo> </mo><mi>Ta</mi><mo> </mo><mi>có</mi><mo> </mo><mi>điểm</mi><mo> </mo><mi mathvariant="normal">C</mi><mo>(</mo><mn>0</mn><mo>;</mo><msqrt><mn>3</mn></msqrt><mo>)</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Cho</mi><mo> </mo><mi mathvariant="normal">y</mi><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo> </mo><mo>=</mo><mo>></mo><mo> </mo><mi mathvariant="normal">x</mi><mo> </mo><mo>=</mo><mo> </mo><mo>-</mo><mn>3</mn><mo> </mo><mo>=</mo><mo>></mo><mo> </mo><mi>Ta</mi><mo> </mo><mi>có</mi><mo> </mo><mi>điểm</mi><mo> </mo><mi mathvariant="normal">D</mi><mo>(</mo><mo>-</mo><mn>3</mn><mo>;</mo><mn>0</mn><mo>)</mo></math></p>
<p>Đồ thị hàm số <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo> </mo><mo>=</mo><mo> </mo><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac><mi>x</mi><mo> </mo><mo>+</mo><mo> </mo><msqrt><mn>3</mn></msqrt></math> là đường thẳng đi qua điểm C và D.</p>
<p>- Vẽ đồ thị hàm số <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo> </mo><mo>=</mo><mo> </mo><msqrt><mn>3</mn></msqrt><mi>x</mi><mo> </mo><mo>-</mo><mo> </mo><msqrt><mn>3</mn></msqrt></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Cho</mi><mo> </mo><mi mathvariant="normal">x</mi><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo> </mo><mo>=</mo><mo>></mo><mo> </mo><mi mathvariant="normal">y</mi><mo> </mo><mo>=</mo><mo> </mo><mo>-</mo><msqrt><mn>3</mn></msqrt><mo> </mo><mo>=</mo><mo>></mo><mo> </mo><mi>Ta</mi><mo> </mo><mi>có</mi><mo> </mo><mi>điểm</mi><mo> </mo><mi mathvariant="normal">E</mi><mo>(</mo><mn>0</mn><mo>;</mo><mo>-</mo><msqrt><mn>3</mn></msqrt><mo>)</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Cho</mi><mo> </mo><mi mathvariant="normal">y</mi><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo> </mo><mo>=</mo><mo>></mo><mo> </mo><mi mathvariant="normal">x</mi><mo> </mo><mo>=</mo><mo> </mo><mn>1</mn><mo> </mo><mo>=</mo><mo>></mo><mo> </mo><mi>Ta</mi><mo> </mo><mi>có</mi><mo> </mo><mi>điểm</mi><mo> </mo><mi mathvariant="normal">F</mi><mo>(</mo><mn>1</mn><mo>;</mo><mn>0</mn><mo>)</mo></math></p>
<p>Đồ thị hàm số <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo> </mo><mo>=</mo><mo> </mo><msqrt><mn>3</mn></msqrt><mi>x</mi><mo> </mo><mo>-</mo><mo> </mo><msqrt><mn>3</mn></msqrt></math> là đường thẳng đi qua hai điểm E và F.</p>
<p>Vẽ đồ thị các hàm số trên như sau:</p>
<p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/26102022/bai-31-trand-59-sdk-toan-9-tap-1-3-WjRa6q.jpg" /></p>
<p>b) Gọi O là gốc tọa độ</p>
<p>Ta có:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mo> </mo><mi>α</mi><mo> </mo><mo>=</mo><mo> </mo><mfrac><mrow><mi>O</mi><mi>A</mi></mrow><mrow><mi>O</mi><mi>B</mi></mrow></mfrac><mo> </mo><mo>=</mo><mo> </mo><mfrac><mfenced open="|" close="|"><mn>1</mn></mfenced><mfenced open="|" close="|"><mrow><mo>-</mo><mn>1</mn></mrow></mfenced></mfrac><mo> </mo><mo>=</mo><mo> </mo><mn>1</mn><mo> </mo><mo>⇒</mo><mo> </mo><mi>α</mi><mo> </mo><mo>=</mo><mo> </mo><mn>45</mn><mo>°</mo><mspace linebreak="newline"/><mi>tan</mi><mo> </mo><mi>β</mi><mo> </mo><mo>=</mo><mo> </mo><mfrac><mrow><mi>O</mi><mi>C</mi></mrow><mrow><mi>O</mi><mi>D</mi></mrow></mfrac><mo> </mo><mo>=</mo><mo> </mo><mfrac><mfenced open="|" close="|"><msqrt><mn>3</mn></msqrt></mfenced><mfenced open="|" close="|"><mrow><mo>-</mo><msqrt><mn>3</mn></msqrt></mrow></mfenced></mfrac><mo> </mo><mo>=</mo><mo> </mo><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac><mo> </mo><mo>⇒</mo><mo> </mo><mi>β</mi><mo> </mo><mo>=</mo><mo> </mo><mn>30</mn><mo>°</mo><mspace linebreak="newline"/><mi>tan</mi><mo> </mo><mi>γ</mi><mo> </mo><mo>=</mo><mo> </mo><mfrac><mrow><mi>O</mi><mi>E</mi></mrow><mrow><mi>O</mi><mi>F</mi></mrow></mfrac><mo> </mo><mo>=</mo><mo> </mo><mfrac><mfenced open="|" close="|"><mrow><mo>-</mo><msqrt><mn>3</mn></msqrt></mrow></mfenced><mn>1</mn></mfrac><mo> </mo><mo>=</mo><mo> </mo><msqrt><mn>3</mn></msqrt><mo> </mo><mo>⇒</mo><mo> </mo><mi>γ</mi><mo> </mo><mo>=</mo><mo> </mo><mn>60</mn><mo>°</mo></math></p>