Bài 9. Ứng dụng thực tế của tam giác đồng dạng
Hướng dẫn giải Bài 54 (Trang 87 SGK Toán Hình học 8, Tập 2)
<p>Để đo khoảng c&aacute;ch giữa hai điểm&nbsp;<span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-1" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span></span></span></span>&nbsp;v&agrave;&nbsp;<span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math></span></span>, trong đ&oacute;&nbsp;<span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-7" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-8" class="mjx-mrow"><span id="MJXc-Node-9" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span></span></span></span>&nbsp;kh&ocirc;ng tới được, người ta tiến h&agrave;nh đo v&agrave; t&iacute;nh khoảng c&aacute;ch như h&igrave;nh 57:</p> <p><span id="MathJax-Element-4-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;/mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;;&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;;&lt;/mo&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;;&lt;/mo&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-10" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-11" class="mjx-mrow"><span id="MJXc-Node-12" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-13" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-14" class="mjx-texatom"><span id="MJXc-Node-15" class="mjx-mrow"><span id="MJXc-Node-16" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">/</span></span></span></span><span id="MJXc-Node-17" class="mjx-texatom"><span id="MJXc-Node-18" class="mjx-mrow"><span id="MJXc-Node-19" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">/</span></span></span></span><span id="MJXc-Node-20" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span><span id="MJXc-Node-21" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">F</span></span><span id="MJXc-Node-22" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">;</span></span><span id="MJXc-Node-23" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-24" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span><span id="MJXc-Node-25" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-26" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">m</span></span><span id="MJXc-Node-27" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">;</span></span><span id="MJXc-Node-28" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">D</span></span><span id="MJXc-Node-29" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-30" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-31" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">n</span></span><span id="MJXc-Node-32" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">;</span></span><span id="MJXc-Node-33" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">D</span></span><span id="MJXc-Node-34" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">F</span></span><span id="MJXc-Node-35" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-36" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">a</span></span></span></span></span>.</p> <p><img src="https://img.loigiaihay.com/picture/2018/0718/b54-trang-87-sgk-toan-8-t2-c2.jpg" /></p> <p><strong>LG a.</strong></p> <p>Em h&atilde;y n&oacute;i r&otilde; về c&aacute;ch đo như thế n&agrave;o.</p> <p><strong>Phương ph&aacute;p giải:</strong></p> <p>Nh&igrave;n h&igrave;nh để suy ra được c&aacute;ch đo.&nbsp;</p> <p><strong>Lời giải chi tiết:</strong></p> <p>C&aacute;ch đo:</p> <p>+ Tạo một tia Ay tr&ecirc;n mặt đất vu&ocirc;ng g&oacute;c với tia AB.</p> <p>+ Tr&ecirc;n tia Ay lấy điểm C bất k&igrave;.</p> <p>+ Chọn điểm F sao cho F nằm giữa B v&agrave; C.</p> <p>+ Từ F hạ FD vu&ocirc;ng g&oacute;c với AC (D nằm tr&ecirc;n AC).</p> <p>+ Đo c&aacute;c cạnh AD, DC, DF ta t&iacute;nh được khoảng c&aacute;ch AB.</p> <p><strong>LG b.</strong></p> <p>T&iacute;nh độ d&agrave;i&nbsp;<span id="MathJax-Element-5-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-37" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-38" class="mjx-mrow"><span id="MJXc-Node-39" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></span></span>&nbsp;của khoảng c&aacute;ch&nbsp;<span id="MathJax-Element-6-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-40" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-41" class="mjx-mrow"><span id="MJXc-Node-42" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-43" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi></math></span></span>.</p> <p><strong>Phương ph&aacute;p giải:</strong></p> <p>&Aacute;p dụng:</p> <p>- T&iacute;nh chất 2 tam gi&aacute;c đồng dạng.</p> <p>- Định l&iacute;: Nếu một đường thẳng cắt hai cạnh của tam gi&aacute;c v&agrave; song song với cạnh c&ograve;n lại th&igrave; n&oacute; tạo th&agrave;nh một tam gi&aacute;c mới đồng dạng với tam gi&aacute;c đ&atilde; cho.</p> <p><strong>Lời giải chi tiết:</strong></p> <p>C&oacute; DF//AB (c&ugrave;ng vu&ocirc;ng g&oacute;c với AC theo c&aacute;ch dựng) n&ecirc;n <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#9651;</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>D</mi><mo>&#8290;</mo><mi>F</mi><mo>&#8290;</mo><mo>~</mo><mo>&#8290;</mo><mi mathvariant="normal">&#9651;</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mfrac><mrow><mi>D</mi><mo>&#8290;</mo><mi>F</mi></mrow><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>C</mi><mo>&#8290;</mo><mi>D</mi></mrow><mrow><mi>C</mi><mo>&#8290;</mo><mi>A</mi></mrow></mfrac></mstyle></math> (t&iacute;nh chất 2 tam gi&aacute;c đồng dạng)</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>=</mo><mfrac><mrow><mi>D</mi><mo>&#8290;</mo><mi>F</mi><mo>.</mo><mi>C</mi><mo>&#8290;</mo><mi>A</mi></mrow><mrow><mi>C</mi><mo>&#8290;</mo><mi>D</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>a</mi><mo>&#8290;</mo><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo></mrow></mrow><mi>n</mi></mfrac></mstyle></math><br />Vậy <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>x</mi><mo>=</mo><mfrac><mrow><mi>D</mi><mo>&#8290;</mo><mi>F</mi><mo>&#8901;</mo><mi>C</mi><mo>&#8290;</mo><mi>A</mi></mrow><mrow><mi>C</mi><mo>&#8290;</mo><mi>D</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>a</mi><mo>&#8290;</mo><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo></mrow></mrow><mi>n</mi></mfrac></mstyle></math></p>
Xem lời giải bài tập khác cùng bài