Hỏi gia sư
Gia sư 1-1
Chuyên đề
Trắc nghiệm
Tài liệu
Cửa hàng
Chọn lớp
Lớp 6
Lớp 7
Lớp 8
Lớp 9
Lớp 10
Lớp 11
Lớp 12
Đăng ký
Đăng nhập
Trang chủ
Hỏi gia sư
Gia sư 1-1
Chuyên đề
Trắc nghiệm
Tài liệu
Cửa hàng
Trang chủ
/
Giải bài tập
/ Lớp 8 / Toán học /
Bài 5. Trường hợp đồng dạng thứ nhất
Bài 5. Trường hợp đồng dạng thứ nhất
Hướng dẫn giải Bài 29 (Trang 74 SGK Toán Hình học 8, Tập 2)
<p><strong class="content_question">Đề bài</strong></p> <p>Cho tam giác <span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mi>C</mi></math>"><span id="MJXc-Node-1" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-4" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">BC</span></span></span></span></span> và <span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>A</mi><mo>&#x2032;</mo></msup><msup><mi>B</mi><mo>&#x2032;</mo></msup><msup><mi>C</mi><mo>&#x2032;</mo></msup></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>A</mi><mo>′</mo></msup><msup><mi>B</mi><mo>′</mo></msup><msup><mi>C</mi><mo>′</mo></msup></math></span></span> có kích thước như trong hình 35.</p> <p><img src="https://img.loigiaihay.com/picture/2018/0718/b29-trang-74-sgk-toan-8-t2-c2.jpg" /></p> <p>a) Tam giác <span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mi>C</mi></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mi>C</mi></math></span></span> và <span id="MathJax-Element-4-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>A</mi><mo>&#x2032;</mo></msup><msup><mi>B</mi><mo>&#x2032;</mo></msup><msup><mi>C</mi><mo>&#x2032;</mo></msup></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>A</mi><mo>′</mo></msup><msup><mi>B</mi><mo>′</mo></msup><msup><mi>C</mi><mo>′</mo></msup></math></span></span> có đồng dạng với nhau không? Vì sao?</p> <p>b) Tính tỉ số chu vi của hai tam giác đó.</p> <p><strong class="content_detail">Lời giải chi tiết</strong></p> <p>Ta có:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⁢</mo><mfrac><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi></mrow><mrow><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup></mrow></mfrac><mo>=</mo><mfrac><mn>6</mn><mn>4</mn></mfrac><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>;</mo><mfrac><mrow><mi>A</mi><mo>⁢</mo><mi>C</mi></mrow><mrow><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>C</mi><mo>'</mo></msup></mrow></mfrac><mo>=</mo><mfrac><mn>9</mn><mn>6</mn></mfrac><mo>=</mo><mpadded><mfrac><mn>3</mn><mn>2</mn></mfrac></mpadded><mo>;</mo><mo> </mo><mfrac><mrow><mi>B</mi><mo>⁢</mo><mi>C</mi></mrow><mrow><msup><mi>B</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>C</mi><mo>'</mo></msup></mrow></mfrac><mo>=</mo><mfrac><mn>12</mn><mn>8</mn></mfrac><mo>=</mo><mpadded><mfrac><mn>3</mn><mn>2</mn></mfrac></mpadded><mspace linebreak="newline"/><mo>⇒</mo><mfrac><mstyle displaystyle="true"><mi>A</mi><mo>⁢</mo><mi>B</mi></mstyle><mstyle displaystyle="true"><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup></mstyle></mfrac><mo>=</mo><mfrac><mstyle displaystyle="true"><mi>A</mi><mo>⁢</mo><mi>C</mi></mstyle><mstyle displaystyle="true"><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>C</mi><mo>'</mo></msup></mstyle></mfrac><mo>=</mo><mfrac><mstyle displaystyle="true"><mi>B</mi><mo>⁢</mo><mi>C</mi></mstyle><mstyle displaystyle="true"><msup><mi>B</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>C</mi><mo>'</mo></msup></mstyle></mfrac><mo>=</mo><mpadded><mfrac><mstyle displaystyle="true"><mn>3</mn></mstyle><mstyle displaystyle="true"><mn>2</mn></mstyle></mfrac></mpadded></math></p> <p><span id="MathJax-Element-6-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; color: #000000; font-family: OpenSans, Tahoma, Helvetica, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo stretchy="false">&#x21D2;</mo><mi mathvariant="normal">&#x0394;</mi><mi>A</mi><mi>B</mi><mi>C</mi><mtext>&#xA0;&#x111;&#x1ED3;ng d&#x1EA1;ng&#xA0;</mtext><mi mathvariant="normal">&#x0394;</mi><msup><mi>A</mi><mo>&#x2032;</mo></msup><msup><mi>B</mi><mo>&#x2032;</mo></msup><msup><mi>C</mi><mo>&#x2032;</mo></msup></math>"><span id="MJXc-Node-186" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-187" class="mjx-mrow"><span id="MJXc-Node-188" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">⇒</span></span><span id="MJXc-Node-189" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">Δ</span></span><span id="MJXc-Node-190" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-191" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-192" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-193" class="mjx-mtext"><span class="mjx-char"><span class="mjx-charbox MJXc-TeX-main-R"> </span><span class="mjx-charbox MJXc-TeX-unknown-R">đ</span><span class="mjx-charbox MJXc-TeX-unknown-R">ồ</span><span class="mjx-charbox MJXc-TeX-main-R">ng d</span><span class="mjx-charbox MJXc-TeX-unknown-R">ạ</span><span class="mjx-charbox MJXc-TeX-main-R">ng </span></span></span><span id="MJXc-Node-194" class="mjx-mi"><span class="mjx-char MJXc-TeX-main-R">Δ</span></span><span id="MJXc-Node-195" class="mjx-msup"><span class="mjx-base"><span id="MJXc-Node-196" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span></span><span class="mjx-sup"><span id="MJXc-Node-197" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">′</span></span></span></span><span id="MJXc-Node-198" class="mjx-msup"><span class="mjx-base"><span id="MJXc-Node-199" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span></span><span class="mjx-sup"><span id="MJXc-Node-200" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">′</span></span></span></span><span id="MJXc-Node-201" class="mjx-msup"><span class="mjx-base"><span id="MJXc-Node-202" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span></span><span class="mjx-sup"><span id="MJXc-Node-203" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">′</span></span></span></span></span></span></span> <span id="MathJax-Element-7-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; color: #000000; font-family: OpenSans, Tahoma, Helvetica, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>(</mo><mrow><mi>c</mi><mo>&#x2212;</mo><mi>c</mi><mo>&#x2212;</mo><mi>c</mi></mrow><mo>)</mo></mrow></math>"><span id="MJXc-Node-204" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-205" class="mjx-mrow"><span id="MJXc-Node-206" class="mjx-mrow"><span id="MJXc-Node-207" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">(</span></span><span id="MJXc-Node-208" class="mjx-mrow"><span id="MJXc-Node-209" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">c</span></span><span id="MJXc-Node-210" class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R">−</span></span><span id="MJXc-Node-211" class="mjx-mi MJXc-space2"><span class="mjx-char MJXc-TeX-math-I">c</span></span><span id="MJXc-Node-212" class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R">−</span></span><span id="MJXc-Node-213" class="mjx-mi MJXc-space2"><span class="mjx-char MJXc-TeX-math-I">c</span></span></span><span id="MJXc-Node-214" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">)</span></span></span></span></span></span><br />b) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi></mrow><mrow><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>A</mi><mo>⁢</mo><mi>C</mi></mrow><mrow><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>C</mi><mo>'</mo></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>B</mi><mo>⁢</mo><mi>C</mi></mrow><mrow><msup><mi>B</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>C</mi><mo>'</mo></msup></mrow></mfrac><mo>=</mo><mpadded><mfrac><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>+</mo><mi>A</mi><mo>⁢</mo><mi>C</mi><mo>+</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mrow><mrow><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup><mo>+</mo><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>C</mi><mo>'</mo></msup><mo>+</mo><msup><mi>B</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>C</mi><mo>'</mo></msup></mrow></mfrac></mpadded><mo>=</mo><mfrac><msub><mi>C</mi><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mrow></msub><msub><mi>C</mi><mrow><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>C</mi><mo>'</mo></msup></mrow></msub></mfrac><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></math><br />(với <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msub><mi>C</mi><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mrow></msub></mstyle></math> và <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msub><mi>C</mi><mrow><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>C</mi><mo>'</mo></msup></mrow></msub></mstyle></math> lần lượt là chu vi của hai tam giác <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi><mo>,</mo><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>C</mi><mo>'</mo></msup></mstyle></math>)<br />Vậy tỉ số chu vi của tam giác ABC và chu vi của tam giác <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>C</mi><mo>'</mo></msup></mstyle></math> là <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac><mn>3</mn><mn>2</mn></mfrac></mstyle></math></p> <p> </p> <p> </p>
Xem lời giải bài tập khác cùng bài
Hướng dẫn giải Bài 30 (Trang 75 SGK Toán Hình học 8, Tập 2)
Xem lời giải
Hướng dẫn giải Bài 31 (Trang 75 SGK Toán Hình học 8, Tập 2)
Xem lời giải