Bài 6: Bất phương trình mũ và bất phương trình lôgarit
Hướng dẫn giải Bài 1 (Trang 89 SGK Toán Giải Tích 12)
<p><strong>B&agrave;i 1 (Trang 89 SGK To&aacute;n Giải T&iacute;ch 12):</strong></p> <p>Giải c&aacute;c bất phương tr&igrave;nh mũ:</p> <p>a) <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>2</mn><mrow><mo>-</mo><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn><mi mathvariant="normal">x</mi></mrow></msup><mo>&#160;</mo><mo>&#60;</mo><mn>4</mn><mo>&#160;</mo></math></p> <p>b) <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mfrac><mn>7</mn><mn>9</mn></mfrac></mfenced><mrow><mn>2</mn><msup><mi mathvariant="normal">x</mi><mrow><mn>2</mn><mo>&#160;</mo></mrow></msup><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>3</mn><mi mathvariant="normal">x</mi></mrow></msup><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#8805;</mo><mo>&#160;</mo><mfrac><mn>9</mn><mn>7</mn></mfrac></math></p> <p>c) <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>3</mn><mrow><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>2</mn><mo>&#160;</mo></mrow></msup><mo>&#160;</mo><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msup><mn>3</mn><mrow><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>-</mo><mn>1</mn></mrow></msup><mo>&#160;</mo><mo>&#8804;</mo><mo>&#160;</mo><mn>28</mn></math></p> <p>d) <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>3</mn><mo>.</mo><msup><mn>2</mn><mi mathvariant="normal">x</mi></msup><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>2</mn><mo>&#160;</mo><mo>&#62;</mo><mo>&#160;</mo><mn>0</mn></math>.</p> <p><strong><em>Hướng dẫn giải:</em></strong></p> <p>a) <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>2</mn><mrow><mo>-</mo><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>+</mo><mn>3</mn><mi mathvariant="normal">x</mi></mrow></msup><mo>&#160;</mo><mo>&#60;</mo><mo>&#160;</mo><msup><mn>2</mn><mn>2</mn></msup><mo>&#160;</mo><mo>&#8660;</mo><mo>&#160;</mo><mo>-</mo><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>+</mo><mo>&#8201;</mo><mn>3</mn><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>&#60;</mo><mo>&#160;</mo><mn>2</mn><mo>&#160;</mo><mo>&#8660;</mo><mo>&#160;</mo><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>3</mn><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>+</mo><mo>&#8201;</mo><mn>2</mn><mo>&#160;</mo><mo>&#62;</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mo>&#8660;</mo><mo>&#160;</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>&#60;</mo><mo>&#160;</mo><mn>1</mn><mo>&#160;</mo><mi>ho&#7863;c</mi><mo>&#160;</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>&#62;</mo><mo>&#160;</mo><mn>2</mn></math></p> <p>Vậy&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">S</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfenced><mrow><mo>-</mo><mo>&#8734;</mo><mo>;</mo><mn>1</mn></mrow></mfenced><mo>&#160;</mo><mo>&#8746;</mo><mo>&#160;</mo><mfenced><mrow><mn>2</mn><mo>;</mo><mo>+</mo><mo>&#8734;</mo></mrow></mfenced></math>.</p> <p>b)</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mfrac><mn>7</mn><mn>9</mn></mfrac></mfenced><mrow><mn>2</mn><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>-</mo><mn>3</mn><mi mathvariant="normal">x</mi></mrow></msup><mo>&#160;</mo><mo>&#8805;</mo><mo>&#160;</mo><mfrac><mn>9</mn><mn>7</mn></mfrac><mo>&#160;</mo><mo>&#8660;</mo><mo>&#160;</mo><mn>2</mn><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>3</mn><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>&#8804;</mo><mo>&#160;</mo><mo>-</mo><mn>1</mn><mo>&#160;</mo><mo>&#8660;</mo><mo>&#160;</mo><mn>2</mn><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>3</mn><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>1</mn><mo>&#160;</mo><mo>&#8804;</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mo>&#8660;</mo><mo>&#160;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8804;</mo><mi mathvariant="normal">x</mi><mo>&#8804;</mo><mn>1</mn></math></p> <p>Vậy&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">S</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfenced open="[" close="]"><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>;</mo><mn>1</mn></mrow></mfenced></math></p> <p>c)</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>3</mn><mrow><mi mathvariant="normal">x</mi><mo>+</mo><mn>2</mn></mrow></msup><mo>&#160;</mo><mo>+</mo><mo>&#8201;</mo><msup><mn>3</mn><mrow><mi mathvariant="normal">x</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>&#160;</mo><mo>&#8804;</mo><mo>&#160;</mo><mn>28</mn><mo>&#160;</mo><mo>&#8660;</mo><mo>&#160;</mo><mn>9</mn><mo>.</mo><mn>3</mn><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>.</mo><mn>3</mn><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>&#8804;</mo><mo>&#160;</mo><mn>28</mn><mo>&#160;</mo><mo>&#8660;</mo><mo>&#160;</mo><mn>3</mn><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>&#8804;</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>&#8660;</mo><mo>&#160;</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>&#8804;</mo><mo>&#160;</mo><mn>1</mn></math></p> <p>Vậy&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>(</mo><mo>-</mo><mo>&#8734;</mo><mo>;</mo><mn>1</mn><mo>]</mo></math></p> <p>d)</p> <p>Đặt t = 2<sup>x</sup> ( t &gt; 0), ta c&oacute; bất phương tr&igrave;nh t<sup>2</sup> - 3t + 2 &gt; 0&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8660;</mo></math> 0 &lt; t &lt; 1 hoặc t &gt; 2</p> <p>&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8660;</mo></math>2<sup>x</sup> &lt; 1 hoặc 2<sup>x</sup> &gt; 2&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8660;</mo></math>x &lt; 0 hoặc x &gt; 1.</p> <p>Vậy&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">S</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfenced><mrow><mo>-</mo><mo>&#8734;</mo><mo>;</mo><mn>0</mn></mrow></mfenced><mo>&#8746;</mo><mfenced><mrow><mn>1</mn><mo>;</mo><mo>+</mo><mo>&#8734;</mo></mrow></mfenced></math></p>
Hướng dẫn Giải Bài 1 (Trang 89, SGK Toán Giải Tích 12)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 1 (Trang 89, SGK Toán Giải Tích 12)
GV: GV colearn