Bài 6: Bất phương trình mũ và bất phương trình lôgarit
Hướng dẫn giải Bài 2 (Trang 90 SGK Toán Giải Tích 12)
<p><strong>B&agrave;i 2 (Trang 90 SGK To&aacute;n Giải T&iacute;ch 12):</strong></p> <p>Giải c&aacute;c bất phương tr&igrave;nh l&ocirc;garit:</p> <p>a) <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>8</mn></msub><mo>(</mo><mn>4</mn><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>2</mn><mi>x</mi><mo>)</mo><mo>&#160;</mo><mo>&#8805;</mo><mn>2</mn></math>;</p> <p>b) <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mfrac><mn>1</mn><mn>5</mn></mfrac></msub><mo>(</mo><mn>3</mn><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>5</mn><mo>)</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#62;</mo><mo>&#160;</mo><mi>l</mi><msub><mi>og</mi><mfrac><mn>1</mn><mn>5</mn></mfrac></msub><mo>(</mo><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>1</mn><mo>)</mo></math>;</p> <p>c) <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mrow><mn>0</mn><mo>,</mo><mn>2</mn></mrow></msub><mi>x</mi><mo>&#160;</mo><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msub><mi>log</mi><mn>5</mn></msub><mo>(</mo><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>2</mn><mo>&#160;</mo><mo>)</mo><mo>&#160;</mo><mo>&#60;</mo><msub><mi>log</mi><mrow><mn>0</mn><mo>,</mo><mn>2</mn></mrow></msub><mn>3</mn></math>;</p> <p>d) <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>log</mi><mfrac><mn>2</mn><mn>3</mn></mfrac><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>5</mn><msub><mi>log</mi><mn>3</mn></msub><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>6</mn><mo>&#8804;</mo><mn>0</mn></math>.</p> <p><strong><em>Hướng dẫn giải:</em></strong></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>)</mo><mo>&#160;</mo><msub><mi>log</mi><mn>8</mn></msub><mo>(</mo><mn>4</mn><mo>&#160;</mo><mo>-</mo><mn>2</mn><mi>x</mi><mo>&#160;</mo><mo>)</mo><mo>&#160;</mo><mo>&#8805;</mo><mn>2</mn><mo>&#160;</mo><mo>&#8660;</mo><mn>4</mn><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>2</mn><mi>x</mi><mo>&#160;</mo><mo>&#8805;</mo><mo>&#160;</mo><msup><mn>8</mn><mn>2</mn></msup><mo>&#160;</mo><mo>&#160;</mo><mo>&#8660;</mo><mo>&#160;</mo><mn>2</mn><mi>x</mi><mo>&#160;</mo><mo>&#8804;</mo><mo>&#160;</mo><mo>-</mo><mn>60</mn><mo>&#160;</mo><mo>&#8660;</mo><mo>&#160;</mo><mi>x</mi><mo>&#8804;</mo><mo>-</mo><mn>30</mn><mo>.</mo><mo>&#160;</mo><mi>V</mi><mi>&#7853;</mi><mi>y</mi><mo>&#160;</mo><mi>S</mi><mo>=</mo><mo>(</mo><mo>-</mo><mo>&#8734;</mo><mo>;</mo><mo>-</mo><mn>30</mn><mo>]</mo></math>.</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>)</mo><mo>&#160;</mo><msub><mi>log</mi><mstyle displaystyle="false"><mfrac><mn>1</mn><mn>5</mn></mfrac></mstyle></msub><mo>(</mo><mn>3</mn><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>5</mn><mo>)</mo><mo>&#160;</mo><mo>&#62;</mo><mo>&#160;</mo><msub><mi>log</mi><mstyle displaystyle="false"><mfrac><mn>1</mn><mn>5</mn></mfrac></mstyle></msub><mo>(</mo><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>1</mn><mo>&#160;</mo><mo>)</mo><mo>&#160;</mo><mo>&#8660;</mo><mn>0</mn><mo>&#160;</mo><mo>&#60;</mo><mo>&#160;</mo><mn>3</mn><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>5</mn><mo>&#160;</mo><mo>&#60;</mo><mo>&#160;</mo><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>1</mn><mspace linebreak="newline"/><mo>&#8660;</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mn>3</mn><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>5</mn><mo>&#160;</mo><mo>&#62;</mo><mo>&#160;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mn>3</mn><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>5</mn><mo>&#160;</mo><mo>&#60;</mo><mo>&#160;</mo><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#8660;</mo><mo>&#160;</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>x</mi><mo>&#62;</mo><mstyle displaystyle="false"><mfrac><mn>5</mn><mn>3</mn></mfrac></mstyle><mo>&#160;</mo><mo>&#160;</mo></mtd></mtr><mtr><mtd><mi>x</mi><mo>&#60;</mo><mn>3</mn></mtd></mtr></mtable></mfenced><mo>&#8660;</mo><mstyle displaystyle="false"><mfrac><mn>5</mn><mn>3</mn></mfrac></mstyle><mo>&#60;</mo><mi>x</mi><mo>&#60;</mo><mn>3</mn><mspace linebreak="newline"/><mspace linebreak="newline"/><mi>V</mi><mi>&#7853;</mi><mi>y</mi><mo>&#160;</mo><mi>S</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfenced><mrow><mfrac><mn>5</mn><mn>3</mn></mfrac><mo>;</mo><mn>3</mn></mrow></mfenced><mo>&#160;</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">c</mi><mo>)</mo><mo>&#160;</mo><mo>&#160;</mo><msub><mi>log</mi><mstyle displaystyle="false"><mfrac><mn>1</mn><mn>5</mn></mfrac></mstyle></msub><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msub><mi>log</mi><mn>5</mn></msub><mo>(</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>-</mo><mn>2</mn><mo>)</mo><mo>&#160;</mo><mo>&#60;</mo><mo>&#160;</mo><msub><mi>log</mi><mstyle displaystyle="false"><mfrac><mn>1</mn><mn>5</mn></mfrac></mstyle></msub><mn>3</mn><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#8660;</mo><mo>-</mo><msub><mi>log</mi><mn>5</mn></msub><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mo>&#160;</mo><msub><mi>log</mi><mn>5</mn></msub><mo>(</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>-</mo><mn>2</mn><mo>)</mo><mo>&#160;</mo><mo>&#60;</mo><mo>-</mo><msub><mi>log</mi><mn>5</mn></msub><mn>3</mn><mspace linebreak="newline"/><mo>&#8660;</mo><mo>&#160;</mo><msub><mi>log</mi><mn>5</mn></msub><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mo>&#160;</mo><msub><mi>log</mi><mn>5</mn></msub><mo>(</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>-</mo><mn>2</mn><mo>)</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#62;</mo><msub><mi>log</mi><mn>5</mn></msub><mn>3</mn><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#8660;</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">x</mi><mo>&#62;</mo><mn>2</mn></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi><mo>(</mo><mi mathvariant="normal">x</mi><mo>-</mo><mn>2</mn><mo>)</mo><mo>&#160;</mo><mo>&#62;</mo><mo>&#160;</mo><mn>3</mn></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>&#8660;</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">x</mi><mo>&#62;</mo><mn>2</mn></mtd></mtr><mtr><mtd><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>2</mn><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>-</mo><mn>3</mn><mo>&#160;</mo><mo>&#62;</mo><mn>0</mn></mtd></mtr></mtable></mfenced><mo>&#160;</mo><mo>&#8660;</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">x</mi><mo>&#62;</mo><mn>2</mn></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi><mo>&#60;</mo><mo>-</mo><mn>1</mn><mo>&#160;</mo><mi>ho&#7863;c</mi><mo>&#160;</mo><mi mathvariant="normal">x</mi><mo>&#62;</mo><mn>3</mn><mo>&#160;</mo></mtd></mtr></mtable></mfenced><mo>&#8660;</mo><mi mathvariant="normal">x</mi><mo>&#62;</mo><mn>3</mn><mspace linebreak="newline"/><mspace linebreak="newline"/><mi>V&#7853;y</mi><mo>&#160;</mo><mi mathvariant="normal">S</mi><mo>=</mo><mo>(</mo><mn>3</mn><mo>;</mo><mo>+</mo><mo>&#8734;</mo><mo>)</mo><mo>.</mo></math></p> <p>d) Điều kiện: x &gt; 0.</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#272;&#7863;t</mi><mo>&#160;</mo><mi mathvariant="normal">t</mi><mo>=</mo><msub><mi>log</mi><mn>3</mn></msub><mi mathvariant="normal">x</mi><mo>,</mo><mo>&#160;</mo><mi>ta</mi><mo>&#160;</mo><mi>c&#243;</mi><mo>:</mo><mo>&#160;</mo><msup><mi mathvariant="normal">t</mi><mn>2</mn></msup><mo>&#160;</mo><mo>-</mo><mn>5</mn><mi mathvariant="normal">t</mi><mo>&#160;</mo><mo>+</mo><mn>6</mn><mo>&#160;</mo><mo>&#8804;</mo><mn>0</mn><mo>&#160;</mo><mo>&#160;</mo><mo>&#8660;</mo><mo>&#160;</mo><mn>2</mn><mo>&#160;</mo><mo>&#8804;</mo><mo>&#160;</mo><mi mathvariant="normal">t</mi><mo>&#160;</mo><mo>&#8804;</mo><mo>&#160;</mo><mn>3</mn><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><mo>&#160;</mo><mn>2</mn><mo>&#160;</mo><mo>&#8804;</mo><mo>&#160;</mo><msub><mi>log</mi><mn>3</mn></msub><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>&#160;</mo><mo>&#8804;</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>&#8660;</mo><mo>&#160;</mo><mn>9</mn><mo>&#160;</mo><mo>&#8804;</mo><mo>&#160;</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>&#8804;</mo><mo>&#160;</mo><mn>27</mn><mo>.</mo><mo>&#160;</mo><mi>V&#7853;y</mi><mo>&#160;</mo><mi mathvariant="normal">S</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>[</mo><mn>9</mn><mo>;</mo><mn>27</mn><mo>]</mo><mo>.</mo></math></p>
Hướng dẫn Giải Bài 2 (Trang 90, SGK Toán Giải Tích 12)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 2 (Trang 90, SGK Toán Giải Tích 12)
GV: GV colearn