Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Hướng dẫn giải Hoạt động 6 (Trang 75 SGK Toán Hình học 11)
<p><strong class="content_question">Đề b&agrave;i</strong></p> <p>Cho hai mặt phẳng <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>&alpha;</mi></mfenced></math>&nbsp;v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>&beta;</mi></mfenced></math>&nbsp;song song với nhau. Đường thẳng <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> cắt&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>&alpha;</mi></mfenced></math> v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>&beta;</mi></mfenced></math>&nbsp;lần lượt tại <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>&nbsp;v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math>. Đường thẳng <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math></p> <p>&nbsp;song song với <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>&nbsp;cắt <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>&alpha;</mi></mfenced></math>&nbsp;v&agrave;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>&beta;</mi></mfenced></math> lần lượt tại <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math>&nbsp;v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi></math>.</p> <p>H&igrave;nh 2.72 minh họa nội dung tr&ecirc;n đ&uacute;ng hay sai?</p> <p><img src="https://img.loigiaihay.com/picture/2018/0915/6.PNG" alt="" width="275" height="226" /></p> <p class="content_method_header"><strong class="content_method">Phương ph&aacute;p giải&nbsp;</strong></p> <div class="content_method_content"> <p>Sử dụng định l&iacute; 3 trang 67: Cho hai mặt phẳng song song. Nếu một mặt phẳng cắt mặt phẳng n&agrave;y th&igrave; cũng</p> <p>cắt mặt phẳng kia v&agrave; hai giao tuyến song song.</p> </div> <p><strong class="content_detail">Lời giải chi tiết</strong></p> <p>Sai v&igrave; theo đề b&agrave;i ta c&oacute;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>&alpha;</mi></mfenced><mo>∥</mo><mfenced><mi>&beta;</mi></mfenced></math></p> <p>&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>∥</mo><mi>b</mi></math> n&ecirc;n <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>,</mo><mi>B</mi><mo>,</mo><mi>C</mi><mo>,</mo><mi>D</mi></math>&nbsp;thuộc c&ugrave;ng một mặt phẳng <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>A</mi><mi>B</mi><mi>C</mi><mi>D</mi></mrow></mfenced></math><span id="MathJax-Element-17-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mo stretchy=&quot;false&quot;&gt;(&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mo stretchy=&quot;false&quot;&gt;)&lt;/mo&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>.</mo></math></span></span></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi></math> l&agrave; giao tuyến của <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>&alpha;</mi></mfenced></math>&nbsp;v&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>A</mi><mi>B</mi><mi>C</mi><mi>D</mi></mrow></mfenced></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mi>D</mi></math> l&agrave; giao tuyến của <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>&beta;</mi></mfenced></math>&nbsp;v&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>A</mi><mi>B</mi><mi>C</mi><mi>D</mi></mrow></mfenced></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&rArr;</mo><mi>A</mi><mi>B</mi><mo>∥</mo><mi>C</mi><mi>D</mi></math> (theo định l&iacute; 3 trang 67)</p> <p>H&igrave;nh 2.72 kh&ocirc;ng biểu diễn được <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mo>∥</mo><mi>C</mi><mi>D</mi></math><span id="MathJax-Element-25-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;/mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/math&gt;"><span id="MJXc-Node-161" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-162" class="mjx-mrow"><span id="MJXc-Node-173" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">.</span></span></span></span></span></p>
Xem lời giải bài tập khác cùng bài