Bài 6: Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Hướng dẫn giải Bài 47 (Trang 27 SGK Toán 9, Tập 1)
<p><strong>B&agrave;i 47 (Trang 27 SGK To&aacute;n 9, Tập 1):</strong></p> <p>R&uacute;t gọn:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">a</mi><mo>)</mo><mo>&#160;</mo><mo>&#160;</mo><mfrac><mn>2</mn><mrow><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>-</mo><msup><mi mathvariant="normal">y</mi><mn>2</mn></msup></mrow></mfrac><mo>.</mo><msqrt><mfrac><mrow><mn>3</mn><msup><mfenced><mrow><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">y</mi></mrow></mfenced><mn>2</mn></msup></mrow><mn>2</mn></mfrac><mo>&#160;</mo><mo>&#160;</mo></msqrt><mo>&#160;</mo><mi>v&#7899;i</mi><mo>&#160;</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>&#8805;</mo><mo>&#160;</mo><mn>0</mn><mo>,</mo><mo>&#160;</mo><mi mathvariant="normal">y</mi><mo>&#160;</mo><mo>&#8805;</mo><mo>&#160;</mo><mn>0</mn><mo>,</mo><mo>&#160;</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>&#8800;</mo><mo>&#160;</mo><mi mathvariant="normal">y</mi><mo>;</mo><mspace linebreak="newline"/><mspace linebreak="newline"/><mi mathvariant="normal">b</mi><mo>)</mo><mo>&#160;</mo><mo>&#160;</mo><mfrac><mn>2</mn><mrow><mn>2</mn><mi mathvariant="normal">a</mi><mo>-</mo><mn>1</mn></mrow></mfrac><mo>.</mo><msqrt><mn>5</mn><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup><mfenced><mrow><mn>1</mn><mo>-</mo><mn>4</mn><mi mathvariant="normal">a</mi><mo>+</mo><mn>4</mn><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup></mrow></mfenced></msqrt><mo>&#160;</mo><mo>&#160;</mo><mi>v&#7899;i</mi><mo>&#160;</mo><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>&#62;</mo><mo>&#160;</mo><mn>0</mn><mo>,</mo><mn>5</mn><mo>.</mo></math></p> <p>&nbsp;</p> <p><strong><span style="text-decoration: underline;"><em>Hướng dẫn giải:</em></span></strong></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">a</mi><mo>)</mo><mo>&#160;</mo><mo>&#160;</mo><mfrac><mn>2</mn><mrow><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>-</mo><msup><mi mathvariant="normal">y</mi><mn>2</mn></msup></mrow></mfrac><mo>.</mo><msqrt><mfrac><mrow><mn>3</mn><msup><mfenced><mrow><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">y</mi></mrow></mfenced><mn>2</mn></msup></mrow><mn>2</mn></mfrac></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>2</mn><mrow><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>-</mo><msup><mi mathvariant="normal">y</mi><mn>2</mn></msup></mrow></mfrac><mfenced open="|" close="|"><mrow><mi mathvariant="normal">x</mi><mo>+</mo><mi mathvariant="normal">y</mi></mrow></mfenced><msqrt><mfrac><mn>3</mn><mn>2</mn></mfrac></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi mathvariant="normal">y</mi></mrow><mrow><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msup><mi mathvariant="normal">y</mi><mn>2</mn></msup></mrow></mfrac><msqrt><msup><mn>2</mn><mn>2</mn></msup><mo>.</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><msqrt><mn>6</mn></msqrt><mrow><mi mathvariant="normal">x</mi><mo>-</mo><mi mathvariant="normal">y</mi></mrow></mfrac><mo>&#160;</mo><mfenced><mrow><mi>v&#236;</mi><mo>&#160;</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>&#8805;</mo><mo>&#160;</mo><mn>0</mn><mo>,</mo><mo>&#160;</mo><mi mathvariant="normal">y</mi><mo>&#160;</mo><mo>&#8805;</mo><mo>&#160;</mo><mn>0</mn><mo>,</mo><mo>&#160;</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>&#8800;</mo><mo>&#160;</mo><mi mathvariant="normal">y</mi><mo>&#160;</mo><mi>n&#234;n</mi><mo>&#160;</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi mathvariant="normal">y</mi><mo>&#160;</mo><mo>&#62;</mo><mo>&#160;</mo><mn>0</mn></mrow></mfenced><mo>.</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">b</mi><mo>)</mo><mo>&#160;</mo><mfrac><mn>2</mn><mrow><mn>2</mn><mi mathvariant="normal">a</mi><mo>-</mo><mn>1</mn></mrow></mfrac><msqrt><mn>5</mn><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup><mfenced><mrow><mn>1</mn><mo>-</mo><mn>4</mn><mi mathvariant="normal">a</mi><mo>+</mo><mn>4</mn><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup></mrow></mfenced></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>2</mn><mrow><mn>2</mn><mi mathvariant="normal">a</mi><mo>-</mo><mn>1</mn></mrow></mfrac><msqrt><mn>5</mn><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup><msup><mfenced><mrow><mn>1</mn><mo>-</mo><mn>2</mn><mi mathvariant="normal">a</mi></mrow></mfenced><mn>2</mn></msup></msqrt><mo>&#160;</mo><mo>=</mo><mfrac><mrow><mn>2</mn><mfenced open="|" close="|"><mi mathvariant="normal">a</mi></mfenced><mo>.</mo><mfenced open="|" close="|"><mrow><mn>1</mn><mo>-</mo><mn>2</mn><mi mathvariant="normal">a</mi></mrow></mfenced><msqrt><mn>5</mn></msqrt></mrow><mrow><mn>2</mn><mi mathvariant="normal">a</mi><mo>-</mo><mn>1</mn></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>2</mn><mo>.</mo><mi mathvariant="normal">a</mi><mfenced><mrow><mn>2</mn><mi mathvariant="normal">a</mi><mo>-</mo><mn>1</mn></mrow></mfenced><msqrt><mn>5</mn></msqrt></mrow><mrow><mn>2</mn><mi mathvariant="normal">a</mi><mo>-</mo><mn>1</mn></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>2</mn><msqrt><mn>5</mn></msqrt><mi mathvariant="normal">a</mi><mspace linebreak="newline"/><mspace linebreak="newline"/><mfenced><mrow><mi>V&#236;</mi><mo>&#160;</mo><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>&#62;</mo><mo>&#160;</mo><mn>0</mn><mo>,</mo><mn>5</mn><mo>&#160;</mo><mi>n&#234;n</mi><mo>&#160;</mo><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>&#62;</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mo>&#8658;</mo><mo>&#160;</mo><mn>1</mn><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>2</mn><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>&#60;</mo><mo>&#160;</mo><mn>0</mn></mrow></mfenced></math></p>
Hướng dẫn Giải Bài 47 (trang 27, SGK Toán 9, Tập 1)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 47 (trang 27, SGK Toán 9, Tập 1)
GV: GV colearn