Bài 2: Hệ hai phương trình bậc nhất hai ẩn
Hướng dẫn giải Bài 4 (Trang 11 SGK Toán Đại số 9, Tập 2)
<p>Kh&ocirc;ng cần vẽ h&igrave;nh, h&atilde;y cho biết số nghiệm của mỗi hệ phương tr&igrave;nh sau đ&acirc;y v&agrave; giải th&iacute;ch v&igrave; sao:</p> <p>a)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">y</mi><mo>=</mo><mn>3</mn><mo>-</mo><mn>2</mn><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi><mo>=</mo><mn>3</mn><mi mathvariant="normal">x</mi><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; b)<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">y</mi><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi mathvariant="normal">x</mi><mo>+</mo><mn>3</mn></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math></p> <p>c)<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mn>2</mn><mi mathvariant="normal">y</mi><mo>=</mo><mo>-</mo><mn>3</mn><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mn>3</mn><mi mathvariant="normal">y</mi><mo>=</mo><mn>2</mn><mi mathvariant="normal">x</mi></mtd></mtr></mtable></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;d)<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mn>3</mn><mi mathvariant="normal">x</mi><mo>-</mo><mi mathvariant="normal">y</mi><mo>=</mo><mn>3</mn></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi><mo>-</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi mathvariant="normal">y</mi><mo>=</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math></p> <p><strong>Giải</strong></p> <p>a)<strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mrow><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">y</mi><mo>=</mo><mn>3</mn><mo>-</mo><mn>2</mn><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi><mo>=</mo><mn>3</mn><mi mathvariant="normal">x</mi><mo>-</mo><mn>1</mn></mtd></mtr></mtable><mo>&#8660;</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">y</mi><mo>=</mo><mo>-</mo><mn>2</mn><mi mathvariant="normal">x</mi><mo>+</mo><mn>3</mn></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi><mo>=</mo><mn>3</mn><mi mathvariant="normal">x</mi><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced></mrow></mfenced></math></strong></p> <p>Ta c&oacute;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>-</mo><mn>2</mn><mo>,</mo><mo>&#160;</mo><mi>a</mi><mo>'</mo><mo>=</mo><mn>3</mn><mo>&#160;</mo></math>n&ecirc;n&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>&#8800;</mo><mi>a</mi><mo>'</mo><mo>&#8658;</mo></math>Hai đường thẳng cắt nhau&nbsp;</p> <p>Vậy hệ phương tr&igrave;nh c&oacute; một nghiệm (v&igrave; hai đường thẳng c&oacute; phương tr&igrave;nh đ&atilde; cho trong hệ l&agrave; hai đường thẳng c&oacute; hệ g&oacute;c kh&aacute;c nhau n&ecirc;n ch&uacute;ng cắt nhau tại một điểm duy nhất).</p> <p>b)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">y</mi><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi mathvariant="normal">x</mi><mo>+</mo><mn>3</mn></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math></p> <p>C&oacute;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">a</mi><mo>=</mo><mo>&#160;</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>,</mo><mo>&#160;</mo><mi mathvariant="normal">a</mi><mo>'</mo><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>,</mo><mo>&#160;</mo><mi mathvariant="normal">b</mi><mo>=</mo><mn>3</mn><mo>,</mo><mo>&#160;</mo><mi mathvariant="normal">b</mi><mo>'</mo><mo>=</mo><mn>1</mn></math> n&ecirc;n&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">a</mi><mo>=</mo><mi mathvariant="normal">a</mi><mo>'</mo><mo>,</mo><mo>&#160;</mo><mi mathvariant="normal">b</mi><mo>&#8800;</mo><mi mathvariant="normal">b</mi><mo>'</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo></math>Hai đường thẳng song song</p> <p>Vậy hệ phương tr&igrave;nh v&ocirc; nghiệm (v&igrave; hai đường thẳng c&oacute; phương tr&igrave;nh đ&atilde; cho trong hệ l&agrave; đường thẳng kh&aacute;c nhau v&agrave; c&oacute; c&ugrave;ng hệ số g&oacute;c n&ecirc;n ch&uacute;ng song song với nhau).&nbsp;</p> <p>c)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mn>2</mn><mi mathvariant="normal">y</mi><mo>=</mo><mo>-</mo><mn>3</mn><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mn>3</mn><mi mathvariant="normal">y</mi><mo>=</mo><mn>2</mn><mi mathvariant="normal">x</mi></mtd></mtr></mtable></mfenced><mo>&#8660;</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">y</mi><mo>=</mo><mo>-</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mi mathvariant="normal">x</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mi mathvariant="normal">x</mi></mtd></mtr></mtable></mfenced></math></p> <p>C&oacute;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">a</mi><mo>=</mo><mo>-</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>,</mo><mo>&#160;</mo><mi mathvariant="normal">d</mi><mo>'</mo><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>&#160;</mo><mi>n&#234;n</mi><mo>&#160;</mo><mi mathvariant="normal">a</mi><mo>&#8800;</mo><mi mathvariant="normal">a</mi><mo>'</mo><mo>&#8658;</mo></math>Hai đường thẳng cắt nhau. vậy hệ phương tr&igrave;nh c&oacute; một nghiệm.&nbsp;</p> <p>d)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mrow><mtable columnalign="left"><mtr><mtd><mn>3</mn><mi mathvariant="normal">x</mi><mo>-</mo><mi mathvariant="normal">y</mi><mo>=</mo><mn>3</mn></mtd></mtr><mtr><mtd><mi mathvariant="normal">x</mi><mo>-</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi mathvariant="normal">y</mi><mo>=</mo><mn>1</mn></mtd></mtr></mtable><mo>&#8660;</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">y</mi><mo>=</mo><mn>3</mn><mi mathvariant="normal">x</mi><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mfrac><mn>1</mn><mn>3</mn></mfrac><mi mathvariant="normal">y</mi><mo>=</mo><mi mathvariant="normal">x</mi><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced></mrow></mfenced><mo>&#8660;</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">y</mi><mo>=</mo><mn>3</mn><mi mathvariant="normal">x</mi><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mi mathvariant="normal">y</mi><mo>=</mo><mn>3</mn><mi mathvariant="normal">x</mi><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced></math></p> <p>C&oacute;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">a</mi><mo>=</mo><mn>3</mn><mo>,</mo><mo>&#160;</mo><mi mathvariant="normal">a</mi><mo>'</mo><mo>=</mo><mn>3</mn><mo>,</mo><mo>&#160;</mo><mi mathvariant="normal">b</mi><mo>=</mo><mo>-</mo><mn>3</mn><mo>,</mo><mo>&#160;</mo><mi mathvariant="normal">b</mi><mo>'</mo><mo>=</mo><mo>-</mo><mn>3</mn></math> n&ecirc;n&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">a</mi><mo>=</mo><mi mathvariant="normal">a</mi><mo>'</mo><mo>,</mo><mo>&#160;</mo><mi mathvariant="normal">b</mi><mo>&#8800;</mo><mi mathvariant="normal">b</mi><mo>'</mo></math>.&nbsp;</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo></math>Hai đường thẳng tr&ugrave;ng nhau</p> <p>Vậy hệ phương tr&igrave;nh c&oacute; v&ocirc; số nghiệm (v&igrave; hai đường thẳng c&oacute; phương tr&igrave;nh đ&atilde; cho trong hệ tr&ugrave;ng nhau).</p>
Xem lời giải bài tập khác cùng bài