Bài 5: Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn
Hướng dẫn giải Bài 36 (Trang 82 SGK Toán 9 Hình học, Tập 2)
<p>Cho đường tr&ograve;n (O) v&agrave; hai d&acirc;y AB,AC.Gọi M, N lần lượt l&agrave; điểm ch&iacute;nh giữa của&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#9180;</mo></mover><mo>&#160;</mo><mi>v</mi><mi>&#224;</mi><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#9180;</mo></mover></math>. Đường thẳng MN cắt d&acirc;y AB tại E v&agrave; cắt d&acirc;y AC tại H . Chứng minh tam gi&aacute;c AEH l&agrave; tam gi&aacute;c c&acirc;n.</p> <p>Giải</p> <p><img class="wscnph" src="https://static.colearn.vn:8413/v1.0/upload/library/28022022/z3219107716782_cd0a5bb6808a4891f62386ffa2521cf6-1-1hN8x7.jpg" /></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>a</mi><mo>&#160;</mo><mi>c</mi><mi>&#243;</mi><mo>&#160;</mo><mspace linebreak="newline"/><mover><mrow><mi>A</mi><mi>H</mi><mi>M</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mfrac><mrow><mi>s</mi><mi>&#273;</mi><mfenced><mrow><mover><mrow><mi>A</mi><mi>M</mi></mrow><mo>&#9180;</mo></mover><mo>+</mo><mover><mrow><mi>N</mi><mi>C</mi></mrow><mo>&#9180;</mo></mover></mrow></mfenced></mrow><mn>2</mn></mfrac><mo>&#160;</mo><mfenced><mn>1</mn></mfenced><mspace linebreak="newline"/><mover><mrow><mi>A</mi><mi>E</mi><mi>N</mi></mrow><mo>^</mo></mover><mo>=</mo><mfrac><mrow><mi>s</mi><mi>&#273;</mi><mfenced><mrow><mover><mrow><mi>M</mi><mi>B</mi></mrow><mo>&#9180;</mo></mover><mo>+</mo><mover><mrow><mi>A</mi><mi>N</mi></mrow><mo>&#9180;</mo></mover></mrow></mfenced></mrow><mn>2</mn></mfrac><mfenced><mn>2</mn></mfenced><mspace linebreak="newline"/><mo>(</mo><mo>&#160;</mo><mi>V</mi><mi>&#236;</mi><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>H</mi><mi>M</mi></mrow><mo>&#9180;</mo></mover><mo>&#160;</mo><mi>v</mi><mi>&#224;</mi><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>E</mi><mi>N</mi></mrow><mo>&#9180;</mo></mover><mo>&#160;</mo><mi>l</mi><mi>&#224;</mi><mo>&#160;</mo><mi>c</mi><mi>&#225;</mi><mi>c</mi><mo>&#160;</mo><mi>g</mi><mi>&#243;</mi><mi>c</mi><mo>&#160;</mo><mi>c</mi><mi>&#243;</mi><mo>&#160;</mo><mi>&#273;</mi><mi>&#7881;</mi><mi>n</mi><mi>h</mi><mo>&#160;</mo><mi>c</mi><mi>&#7889;</mi><mo>&#160;</mo><mi>&#273;</mi><mi>&#7883;</mi><mi>n</mi><mi>h</mi><mo>&#160;</mo><mi>&#7903;</mi><mo>&#160;</mo><mi>b</mi><mi>&#234;</mi><mi>n</mi><mo>&#160;</mo><mi>t</mi><mi>r</mi><mi>o</mi><mi>n</mi><mi>g</mi><mo>&#160;</mo><mi>&#273;</mi><mi>&#432;</mi><mi>&#7901;</mi><mi>n</mi><mi>g</mi><mo>&#160;</mo><mi>t</mi><mi>r</mi><mi>&#242;</mi><mi>n</mi><mo>)</mo><mspace linebreak="newline"/><mi>T</mi><mi>h</mi><mi>e</mi><mi>o</mi><mo>&#160;</mo><mi>g</mi><mi>i</mi><mi>&#7843;</mi><mo>&#160;</mo><mi>t</mi><mi>h</mi><mi>i</mi><mi>&#7871;</mi><mi>t</mi><mo>&#160;</mo><mo>:</mo><mspace linebreak="newline"/><mover><mrow><mi>A</mi><mi>M</mi></mrow><mo>&#9180;</mo></mover><mo>=</mo><mover><mrow><mi>A</mi><mi>N</mi><mo>&#160;</mo><mo>&#160;</mo></mrow><mo>&#9180;</mo></mover><mo>&#160;</mo><mfenced><mn>3</mn></mfenced><mspace linebreak="newline"/><mover><mrow><mi>N</mi><mi>C</mi></mrow><mo>&#9180;</mo></mover><mo>&#160;</mo><mo>=</mo><mover><mrow><mi>A</mi><mi>N</mi></mrow><mo>&#9180;</mo></mover><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mfenced><mn>4</mn></mfenced><mspace linebreak="newline"/><mi>T</mi><mi>&#7915;</mi><mo>&#160;</mo><mfenced><mn>1</mn></mfenced><mo>,</mo><mfenced><mn>2</mn></mfenced><mo>,</mo><mfenced><mn>3</mn></mfenced><mo>&#160;</mo><mi>v</mi><mi>&#224;</mi><mo>&#160;</mo><mfenced><mn>4</mn></mfenced><mo>&#160;</mo><mi>s</mi><mi>u</mi><mi>y</mi><mo>&#160;</mo><mi>r</mi><mi>a</mi><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>H</mi><mi>M</mi></mrow><mo>^</mo></mover><mo>=</mo><mover><mrow><mi>A</mi><mi>E</mi><mi>N</mi><mo>&#160;</mo></mrow><mo>^</mo></mover><mo>&#160;</mo><mi>d</mi><mi>o</mi><mo>&#160;</mo><mi>&#273;</mi><mi>&#243;</mi><mo>&#160;</mo><mo>&#9651;</mo><mi>A</mi><mi>E</mi><mi>H</mi><mo>&#160;</mo><mi>l</mi><mi>&#224;</mi><mo>&#160;</mo><mi>t</mi><mi>a</mi><mi>m</mi><mo>&#160;</mo><mi>g</mi><mi>i</mi><mi>&#225;</mi><mi>c</mi><mo>&#160;</mo><mi>c</mi><mi>&#226;</mi><mi>n</mi><mo>&#160;</mo><mspace linebreak="newline"/></math></p>
Hướng dẫn Giải Bài 36 (Trang 82, SGK Toán Hình học 9, Tập 2)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 36 (Trang 82, SGK Toán Hình học 9, Tập 2)
GV: GV colearn