Hỏi gia sư
Chuyên đề
Trắc nghiệm
Tài liệu
Cửa hàng
Chọn lớp
Lớp 6
Lớp 7
Lớp 8
Lớp 9
Lớp 10
Lớp 11
Lớp 12
Đăng ký
Đăng nhập
Trang chủ
Hỏi gia sư
Chuyên đề
Trắc nghiệm
Tài liệu
Cửa hàng
Trang chủ
/
Giải bài tập
/ Lớp 8 / Toán học /
Bài 6. Trường hợp đồng dạng thứ hai
Bài 6. Trường hợp đồng dạng thứ hai
Hướng dẫn giải Bài 33 (Trang 77 SGK Toán Hình học 8, Tập 2)
<p><strong class="content_question">Đề bài</strong></p> <p>Chứng minh rằng nếu tam giác <span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>A</mi><mo>&#x2032;</mo></msup><msup><mi>B</mi><mo>&#x2032;</mo></msup><msup><mi>C</mi><mo>&#x2032;</mo></msup></math>"><span id="MJXc-Node-1" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-msup"><span class="mjx-base"><span id="MJXc-Node-4" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span></span><span class="mjx-sup"><span id="MJXc-Node-5" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">′</span></span></span></span><span id="MJXc-Node-6" class="mjx-msup"><span class="mjx-base"><span id="MJXc-Node-7" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span></span><span class="mjx-sup"><span id="MJXc-Node-8" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">′</span></span></span></span><span id="MJXc-Node-9" class="mjx-msup"><span class="mjx-base"><span id="MJXc-Node-10" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span></span><span class="mjx-sup"><span id="MJXc-Node-11" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">′</span></span></span></span></span></span></span> đồng dạng với tam giác <span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mi>C</mi></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mi>C</mi></math></span></span> theo tỉ số <span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math></span></span>, thì tỉ số của hai đường trung tuyến tương ứng với hai tam giác đó cũng bằng <span id="MathJax-Element-4-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>"><span id="MJXc-Node-20" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-21" class="mjx-mrow"><span id="MJXc-Node-22" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">k</span></span></span></span></span>.</p> <p><strong class="content_detail">Lời giải chi tiết</strong></p> <p><strong class="content_detail"><img src="https://img.loigiaihay.com/picture/2018/0718/b33-trang-77-sgk-toan-8-t2-c2.jpg" /></strong></p> <p><span class="content_detail">Giả sử <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">Δ</mi><mo>⁢</mo><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>C</mi><mo>'</mo></msup></mstyle></math> đồng dạng <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">△</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mstyle></math> theo tỉ số <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>k</mi><mo>,</mo><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>M</mi><mo>'</mo></msup><mo>,</mo><mi>A</mi><mo>⁢</mo><mi>M</mi></mstyle></math> là hai đường trung tuyến tương ứng.<br />vì <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">Δ</mi><mo>⁢</mo><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>C</mi><mo>'</mo></msup></mstyle></math> đồng dạng <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">△</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mstyle></math> theo tỉ số k (giả thiết)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac><mrow><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup></mrow><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><msup><mi>B</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>C</mi><mo>'</mo></msup></mrow><mrow><mi>B</mi><mo>⁢</mo><mi>C</mi></mrow></mfrac><mo>=</mo><mi>k</mi></mstyle></math> (tính chất hai tam giác đồng dạng)<br />Mà <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msup><mi>B</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>C</mi><mo>'</mo></msup><mo>=</mo><mn>2</mn><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>M</mi><mo>'</mo></msup><mo>,</mo><mi>B</mi><mo>⁢</mo><mi>C</mi><mo>=</mo><mn>2</mn><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>M</mi></mstyle></math> (tính chất trung tuyến)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>⇒</mo><mfrac><mrow><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup></mrow><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>2</mn><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>M</mi><mo>'</mo></msup></mrow><mrow><mn>2</mn><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>M</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><msup><mi>B</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>M</mi><mo>'</mo></msup></mrow><mrow><mi>B</mi><mo>⁢</mo><mi>M</mi></mrow></mfrac></mstyle></math><br />Xét <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">△</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>M</mi></mstyle></math> và <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">△</mi><mo>⁢</mo><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>M</mi><mo>'</mo></msup></mstyle></math> có:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mi>B</mi><mo>^</mo></mover><mo>=</mo><mover accent="true"><msup><mi>B</mi><mo>'</mo></msup><mo>^</mo></mover></mstyle></math> (vì <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">Δ</mi><mo>⁢</mo><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>C</mi><mo>'</mo></msup></mstyle></math> đồng dạng <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">Δ</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mstyle></math>)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac><mrow><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup></mrow><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><msup><mi>B</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>M</mi><mo>'</mo></msup></mrow><mrow><mi>B</mi><mo>⁢</mo><mi>M</mi></mrow></mfrac></mstyle></math> (chứng minh trên)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>⇒</mo><mi mathvariant="normal">Δ</mi><mo>⁢</mo><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>M</mi><mo>'</mo></msup></mstyle></math> đồng dạng <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">△</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>M</mi></mstyle></math> theo tỉ số <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac><mrow><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup></mrow><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi></mrow></mfrac><mo>=</mo><mi>k</mi></mstyle></math> (c-g-c)<br /></span><span class="content_detail"><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>⇒</mo><mfrac><mrow><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>M</mi><mo>'</mo></msup></mrow><mrow><mi>A</mi><mo>⁢</mo><mi>M</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup></mrow><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi></mrow></mfrac><mo>=</mo><mi>k</mi></mstyle></math>. (tính chất hai tam giác đồng dạng)</span><strong class="content_detail"><br /></strong></p> <p> </p>
Xem lời giải bài tập khác cùng bài
Hướng dẫn giải Bài 32 (Trang 77 SGK Toán Hình học 8, Tập 2)
Xem lời giải
Hướng dẫn giải Bài 34 (Trang 77 SGK Toán Hình học 8, Tập 2)
Xem lời giải