Bài 6. Trường hợp đồng dạng thứ hai
Hướng dẫn giải Bài 32 (Trang 77 SGK Toán Hình học 8, Tập 2)
<p><strong>Đề b&agrave;i</strong><br />Tr&ecirc;n một cạnh của g&oacute; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>x</mi><mi>O</mi><mi>y</mi><mrow><mo>(</mo><mover accent="true"><mrow><mi>x</mi><mo>&#8290;</mo><mi>O</mi><mo>&#8290;</mo><mi>y</mi></mrow><mo>^</mo></mover><mo>&#8800;</mo><msup><mn>180</mn><mo>&#8728;</mo></msup><mo>)</mo></mrow></mstyle></math>, Đặt c&aacute;c đoạn thẳng <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>O</mi><mo>&#8290;</mo><mi>A</mi><mo>=</mo><mpadded><mn>5</mn></mpadded><mo>&#8290;</mo><mi>cm</mi><mo>,</mo><mi>O</mi><mo>&#8290;</mo><mi>B</mi><mo>=</mo><mpadded><mn>16</mn></mpadded><mo>&#8290;</mo><mi>cm</mi></mstyle></math>. Tr&ecirc;n cạnh thứ hai của g&oacute;c đ&oacute;, đặt c&aacute;c đoạn <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mo>&#8290;</mo><mi>C</mi><mo>=</mo><mpadded><mn>8</mn></mpadded><mo>&#8290;</mo><mi>cm</mi><mo>,</mo><mi>O</mi><mo>&#8290;</mo><mi>D</mi><mo>=</mo><mpadded><mn>10</mn></mpadded><mo>&#8290;</mo><mi>cm</mi><mo>.</mo></math><br />a) Chứng minh hai tam gi&aacute;c OCB v&agrave; OAD đồng dạng.<br />b) Gọi giao điểm của c&aacute;c cạnh AD v&agrave; BC l&agrave; I, chứng minh rằng hai tam gi&aacute;c IAB v&agrave; ICD c&oacute; c&aacute;c g&oacute;c bằng nhau từng đ&ocirc;i một.</p> <p><strong class="content_detail">Lời giải chi tiết</strong></p> <p><img src="https://img.loigiaihay.com/picture/2018/0718/b32-trang-77-sgk-toan-8-t2-c2.jpg" /></p> <p>a) Ta c&oacute;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>O</mi><mo>&#8290;</mo><mi>A</mi></mrow><mrow><mi>O</mi><mo>&#8290;</mo><mi>C</mi></mrow></mfrac><mo>=</mo><mfrac><mn>5</mn><mn>8</mn></mfrac><mo>;</mo><mrow><mfrac><mrow><mi>O</mi><mo>&#8290;</mo><mi>D</mi></mrow><mrow><mi>O</mi><mo>&#8290;</mo><mi>B</mi></mrow></mfrac><mo>=</mo><mfrac><mn>10</mn><mn>16</mn></mfrac><mo>=</mo><mpadded><mfrac><mn>5</mn><mn>8</mn></mfrac></mpadded><mo>&#8290;</mo><mo>&#8658;</mo><mfrac><mrow><mi>O</mi><mo>&#8290;</mo><mi>A</mi></mrow><mrow><mi>O</mi><mo>&#8290;</mo><mi>C</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>O</mi><mo>&#8290;</mo><mi>D</mi></mrow><mrow><mi>O</mi><mo>&#8290;</mo><mi>B</mi></mrow></mfrac></mrow></math><br />X&eacute;t <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#9651;</mi><mo>&#8290;</mo><mi>O</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>B</mi></mstyle></math> v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#9651;</mi><mo>&#8290;</mo><mi>O</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>D</mi></mstyle></math> c&oacute;:<br />+) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mi>O</mi><mo>^</mo></mover></mstyle></math> chung<br />+) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac><mrow><mi>O</mi><mo>&#8290;</mo><mi>A</mi></mrow><mrow><mi>O</mi><mo>&#8290;</mo><mi>C</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>O</mi><mo>&#8290;</mo><mi>D</mi></mrow><mrow><mi>O</mi><mo>&#8290;</mo><mi>B</mi></mrow></mfrac></mstyle></math> (chứng minh tr&ecirc;n)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi mathvariant="normal">&#9651;</mi><mo>&#8290;</mo><mi>O</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>B</mi></mstyle></math> đồng dạng <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#9651;</mi><mo>&#8290;</mo><mi>O</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>D</mi><mo>&#8290;</mo><mrow><mo>(</mo><mi mathvariant="normal">c</mi><mo>-</mo><mi mathvariant="normal">g</mi><mo>-</mo><mi mathvariant="normal">c</mi><mo>)</mo></mrow></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mover accent="true"><mrow><mi>O</mi><mo>&#8290;</mo><mi>D</mi><mo>&#8290;</mo><mi>A</mi></mrow><mo>^</mo></mover><mo>=</mo><mover accent="true"><mrow><mi>C</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>O</mi></mrow><mo>^</mo></mover></mstyle></math> (2 g&oacute;c tương ứng) hay <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>C</mi><mo>&#8290;</mo><mi>D</mi><mo>&#8290;</mo><mi>I</mi></mrow><mo>^</mo></mover><mo>=</mo><mover accent="true"><mrow><mi>I</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>A</mi></mrow><mo>^</mo></mover></mstyle></math><br />b) X&eacute;t <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>I</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>D</mi></mstyle></math> v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>I</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi></mstyle></math> c&oacute;<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>C</mi><mo>&#8290;</mo><mi>I</mi><mo>&#8290;</mo><mi>D</mi></mrow><mo>^</mo></mover><mo>=</mo><mover accent="true"><mrow><mi>A</mi><mo>&#8290;</mo><mi>I</mi><mo>&#8290;</mo><mi>B</mi></mrow><mo>^</mo></mover></mstyle></math> (hai g&oacute;c đối đỉnh) (1)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>C</mi><mo>&#8290;</mo><mi>D</mi><mo>&#8290;</mo><mi>I</mi></mrow><mo>^</mo></mover><mo>=</mo><mover accent="true"><mrow><mi>I</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>A</mi></mrow><mo>^</mo></mover></mstyle></math> (theo c&acirc;u a)<br />Theo định l&iacute; tổng ba g&oacute;c trong một tam gi&aacute;c ta c&oacute;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8290;</mo><mover accent="true"><mrow><mi>C</mi><mo>&#8290;</mo><mi>I</mi><mo>&#8290;</mo><mi>D</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>C</mi><mo>&#8290;</mo><mi>D</mi><mo>&#8290;</mo><mi>I</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>I</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>D</mi></mrow><mo>^</mo></mover><mo>=</mo><mpadded><msup><mn>180</mn><mo>&#8728;</mo></msup></mpadded><mo>&#8290;</mo><mspace linebreak="newline"/><mo>&#8290;</mo><mover accent="true"><mrow><mi>A</mi><mo>&#8290;</mo><mi>I</mi><mo>&#8290;</mo><mi>B</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>I</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>A</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>I</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi></mrow><mo>^</mo></mover><mo>=</mo><mpadded><msup><mn>180</mn><mo>&#8728;</mo></msup></mpadded><mo>&#8290;</mo><mspace linebreak="newline"/><mo>&#8658;</mo><mover accent="true"><mrow><mi>C</mi><mo>&#8290;</mo><mi>I</mi><mo>&#8290;</mo><mi>D</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>C</mi><mo>&#8290;</mo><mi>D</mi><mo>&#8290;</mo><mi>I</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>I</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>D</mi></mrow><mo>^</mo></mover><mo>=</mo><mover accent="true"><mrow><mi>A</mi><mo>&#8290;</mo><mi>I</mi><mo>&#8290;</mo><mi>B</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>I</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>A</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>I</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi></mrow><mo>^</mo></mover><mo>&#8290;</mo></math><br />Từ' (1), (2) v&agrave; (3) suy ra: <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>I</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>D</mi></mrow><mo>^</mo></mover><mo>=</mo><mover accent="true"><mrow><mi>I</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi></mrow><mo>^</mo></mover></mstyle></math><br />Vậy hai tam gi&aacute;c IAB v&agrave; ICD c&oacute; c&aacute;c g&oacute;c bằng nhau từng đ&ocirc;i một.</p>
Xem lời giải bài tập khác cùng bài