Bài 3: Hai tam giác bằng nhau
<div data-v-a7c68f28=""> <div data-v-a7c68f28=""><span data-v-a7c68f28="">Hướng dẫn Giải Bài 4 (Trang 79 SGK Toán 7, Bộ Cánh diều, Tập 2)</span></div> </div>
<p><strong>B&agrave;i 4 (Trang 79 SGK To&aacute;n 7, Bộ C&aacute;nh diều, Tập 2)</strong></p> <p>Cho tam gi&aacute;c ABC v&agrave; điểm M thuộc cạnh BC thoả m&atilde;n <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8710;</mo><mi>A</mi><mi>M</mi><mi>B</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>&#8710;</mo><mi>A</mi><mi>M</mi><mi>C</mi></math> (H&igrave;nh 32).</p> <p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/14102022/bai-4-trand-79-toan-lop-7-tap-2-yI4ryJ.png" /></p> <p>Chứng minh rằng:</p> <p>a) M l&agrave; trung điểm của đoạn thẳng BC;</p> <p>b) Tia AM l&agrave; tia ph&acirc;n gi&aacute;c của <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>A</mi><mi>C</mi></mrow><mo>^</mo></mover></math> v&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>M</mi><mo>&#160;</mo><mo>&#8869;</mo><mo>&#160;</mo><mi>B</mi><mi>C</mi><mo>.</mo></math></p> <p>&nbsp;</p> <p><em><span style="text-decoration: underline;"><strong>Hướng dẫn giải</strong></span></em></p> <p>a) Do <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8710;</mo><mi>A</mi><mi>M</mi><mi>B</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>&#8710;</mo><mi>A</mi><mi>M</mi><mi>C</mi></math> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo></math> MB = MC (2 cạnh tương ứng).</p> <p>Do đ&oacute; M l&agrave; trung điểm của BC.</p> <p>&nbsp;</p> <p>b) Do&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8710;</mo><mi>A</mi><mi>M</mi><mi>B</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>&#8710;</mo><mi>A</mi><mi>M</mi><mi>C</mi><mo>&#160;</mo><mo>&#8658;</mo><mo>&#160;</mo><mover><mrow><mi>M</mi><mi>A</mi><mi>B</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>M</mi><mi>A</mi><mi>C</mi></mrow><mo>^</mo></mover></math> (2 g&oacute;c tương ứng) v&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>M</mi><mi>B</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>M</mi><mi>C</mi></mrow><mo>^</mo></mover></math>&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>2</mn><mo>&#160;</mo><mi>g</mi><mi>&#243;</mi><mi>c</mi><mo>&#160;</mo><mi>t</mi><mi>&#432;</mi><mi>&#417;</mi><mi>n</mi><mi>g</mi><mo>&#160;</mo><mi>&#7913;</mi><mi>n</mi><mi>g</mi><mo>)</mo><mo>.</mo></math></p> <p>Ta c&oacute;:</p> <p>+) <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>M</mi><mi>A</mi><mi>B</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>M</mi><mi>A</mi><mi>C</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>&#8658;</mo></math> AM l&agrave; tia ph&acirc;n gi&aacute;c&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>A</mi><mi>C</mi></mrow><mo>^</mo></mover><mo>.</mo></math></p> <p>+)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>M</mi><mi>B</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>M</mi><mi>C</mi></mrow><mo>^</mo></mover></math>, m&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>M</mi><mi>B</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>M</mi><mi>C</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>180</mn><mo>&#176;</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>M</mi><mi>B</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>M</mi><mi>C</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>90</mn><mo>&#176;</mo></math>hay AM &perp; BC.</p> <p>&nbsp;</p> <p>Vậy AM l&agrave; tia ph&acirc;n gi&aacute;c&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>A</mi><mi>C</mi></mrow><mo>^</mo></mover></math> v&agrave; AM &perp; BC.</p>
Xem lời giải bài tập khác cùng bài