Bài 3: Phép tính lũy thừa với số mũ tự nhiên của một số hữu tỉ
Hướng dẫn giải Bài 1 (Trang 20, SGK Toán 7, Tập 1 - Bộ Cánh Diều)
<p>T&igrave;m số th&iacute;ch hợp cho&nbsp; <span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; color: #000000; font-family: 'Open Sans', Arial, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;menclose notation=&quot;box&quot;&gt;&lt;mtext&gt;&amp;#x2009;&amp;#x2009;&lt;/mtext&gt;&lt;mo&gt;?&lt;/mo&gt;&lt;mtext&gt;&amp;#x2009;&amp;#x2009;&lt;/mtext&gt;&lt;/menclose&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><menclose notation="box"><mo>?</mo><mtext>&thinsp;&thinsp;</mtext></menclose></math></span></span>&nbsp;trong bảng sau:</p> <p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/13062022/1-IwciNH.png" /></p> <p><strong>Hướng dẫn giải</strong></p> <p>+) Lũy thừa&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mo>-</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow></mfenced><mn>4</mn></msup></math></p> <p>Ta c&oacute;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mo>-</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow></mfenced><mn>4</mn></msup><mo>=</mo><mfenced><mrow><mo>-</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow></mfenced><mo>&#160;</mo><mo>.</mo><mo>&#160;</mo><mfenced><mrow><mo>-</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow></mfenced><mo>&#160;</mo><mo>.</mo><mo>&#160;</mo><mfenced><mrow><mo>-</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow></mfenced><mo>&#160;</mo><mo>.</mo><mo>&#160;</mo><mfenced><mrow><mo>-</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mfenced><mrow><mo>-</mo><mn>3</mn></mrow></mfenced><mo>&#160;</mo><mo>.</mo><mo>&#160;</mo><mfenced><mrow><mo>-</mo><mn>3</mn></mrow></mfenced><mo>&#160;</mo><mo>.</mo><mo>&#160;</mo><mfenced><mrow><mo>-</mo><mn>3</mn></mrow></mfenced><mo>&#160;</mo><mo>.</mo><mo>&#160;</mo><mfenced><mrow><mo>-</mo><mn>3</mn></mrow></mfenced></mrow><mrow><mn>2</mn><mo>&#160;</mo><mo>.</mo><mo>&#160;</mo><mn>2</mn><mo>&#160;</mo><mo>.</mo><mo>&#160;</mo><mn>2</mn><mo>&#160;</mo><mo>.</mo><mo>&#160;</mo><mn>2</mn></mrow></mfrac><mspace linebreak="newline"/><mo>=</mo><mo>&#160;</mo><mfrac><mfenced><mrow><mo>-</mo><msup><mn>3</mn><mn>4</mn></msup></mrow></mfenced><msup><mn>2</mn><mn>4</mn></msup></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>81</mn><mn>16</mn></mfrac></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn></mn></mfrac></math></p> <p>Do đ&oacute;, lũy thừa <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mo>-</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow></mfenced><mn>4</mn></msup></math> c&oacute; cơ số l&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></math>; số mũ l&agrave; 4 v&agrave; c&oacute; gi&aacute; trị l&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>81</mn><mn>16</mn></mfrac></math>.</p> <p>+) Lũy thừa (0,1)<sup>3</sup>.</p> <p>Ta c&oacute;: (0,1)<sup>3</sup>&nbsp;= 0,001.</p> <p>Lũy thừa (0,1)<sup>3</sup>&nbsp;c&oacute; cơ số l&agrave; 0,1; số mũ l&agrave; 3 v&agrave; c&oacute; gi&aacute; trị l&agrave; 0,001.</p> <p>+) Lũy thừa c&oacute; cơ số l&agrave; 1,5 v&agrave; số mũ l&agrave; 2 th&igrave; c&oacute; lũy thừa l&agrave; 1,5<sup>2</sup>.</p> <p>Ta c&oacute;: 1,5<sup>2&nbsp;</sup>= 2,25.</p> <p>Do đ&oacute;, lũy thừa c&oacute; cơ số l&agrave; 1,5; số mũ l&agrave; 2 th&igrave; c&oacute; lũy thừa l&agrave; 1,5<sup>2</sup>&nbsp;v&agrave; c&oacute; gi&aacute; trị l&agrave; 2,25.</p> <p>+) Lũy thừa c&oacute; cơ số l&agrave;&nbsp;<span id="MathJax-Element-9-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mfrac&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mfrac&gt;&lt;/math&gt;"><span id="MJXc-Node-175" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-176" class="mjx-mrow"><span id="MJXc-Node-177" class="mjx-mfrac"><span class="mjx-box MJXc-stacked"><span class="mjx-numerator"><span id="MJXc-Node-178" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>4</mn></mfrac></math></span></span></span></span></span></span></span></span> v&agrave; số mũ l&agrave; 4 th&igrave; c&oacute; lũy thừa l&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mfrac><mn>1</mn><mn>4</mn></mfrac></mfenced><mn>4</mn></msup></math>.</p> <p>Ta c&oacute;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mfrac><mn>1</mn><mn>4</mn></mfrac></mfenced><mn>4</mn></msup><mo>&#160;</mo><mo>&#160;</mo><mo>=</mo><mfenced><mfrac><mn>1</mn><mn>3</mn></mfrac></mfenced><mo>&#160;</mo><mo>.</mo><mo>&#160;</mo><mfenced><mfrac><mn>1</mn><mn>3</mn></mfrac></mfenced><mo>.</mo><mo>&#160;</mo><mfenced><mfrac><mn>1</mn><mn>3</mn></mfrac></mfenced><mo>.</mo><mo>&#160;</mo><mfenced><mfrac><mn>1</mn><mn>3</mn></mfrac></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>1</mn><mo>.</mo><mn>1</mn><mo>.</mo><mn>1</mn></mrow><mrow><mn>3</mn><mo>.</mo><mn>3</mn><mo>.</mo><mn>3</mn><mo>.</mo><mn>3</mn></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><msup><mn>1</mn><mn>4</mn></msup><msup><mn>3</mn><mn>4</mn></msup></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>1</mn><mo>&#160;</mo></mrow><mn>81</mn></mfrac></math></p> <p>Do đ&oacute;, lũy thừa c&oacute; cơ số l&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>3</mn></mfrac></math> v&agrave; số mũ l&agrave; 4 th&igrave; c&oacute; lũy thừa l&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mfrac><mn>1</mn><mn>3</mn></mfrac></mfenced><mn>4</mn></msup></math> v&agrave; c&oacute; gi&aacute; trị l&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>81</mn></mfrac></math>.</p> <p>+) Lũy thừa c&oacute; cơ số l&agrave; 2, gi&aacute; trị l&agrave; 1 th&igrave; c&oacute; số mũ l&agrave; 0.</p> <p>Khi đ&oacute;, lũy thừa cần t&igrave;m l&agrave; 2<sup>0</sup>.</p> <p>Vậy ta c&oacute; bảng sau:</p> <table class="table table-bordered" border="1" cellspacing="0" cellpadding="0"> <tbody> <tr> <td valign="top" width="25.96153846153846%"> <p>Lũy thừa</p> </td> <td valign="top" width="14.423076923076923%"> <p><span id="MathJax-Element-16-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;msup&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mtext&gt;&amp;#x2009;&lt;/mtext&gt;&lt;mfrac&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/msup&gt;&lt;/math&gt;"><span id="MJXc-Node-308" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-309" class="mjx-mrow"><span id="MJXc-Node-310" class="mjx-msup"><span class="mjx-base"><span id="MJXc-Node-311" class="mjx-mfenced"><span id="MJXc-Node-312" class="mjx-mo"><span class="mjx-char MJXc-TeX-size1-R">(</span></span><span id="MJXc-Node-313" class="mjx-mrow"><span id="MJXc-Node-314" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">&minus;</span></span><span id="MJXc-Node-315" class="mjx-mtext"></span><span id="MJXc-Node-316" class="mjx-mfrac"><span class="mjx-box MJXc-stacked"><span class="mjx-numerator"><span id="MJXc-Node-317" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">3</span></span></span><span class="mjx-denominator"><span id="MJXc-Node-318" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">2</span></span></span></span></span></span><span id="MJXc-Node-319" class="mjx-mo"><span class="mjx-char MJXc-TeX-size1-R">)</span></span></span></span><span class="mjx-sup"><span id="MJXc-Node-320" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">4</span></span></span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mo>&minus;</mo><mtext>&thinsp;</mtext><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow></mfenced><mn>4</mn></msup></math></span></span></p> </td> <td valign="top" width="12.5%"> <p>(0,1)<sup>3</sup></p> </td> <td valign="top" width="13.782051282051283%"> <p>1,5<sup>2</sup></p> </td> <td valign="top" width="16.666666666666668%"> <p><span id="MathJax-Element-17-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;msup&gt;&lt;mfenced&gt;&lt;mfrac&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mfrac&gt;&lt;/mfenced&gt;&lt;mrow&gt;&lt;mtext&gt;&amp;#x2009;&lt;/mtext&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;"><span id="MJXc-Node-321" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-322" class="mjx-mrow"><span id="MJXc-Node-323" class="mjx-msup"><span class="mjx-base"><span id="MJXc-Node-324" class="mjx-mfenced"><span id="MJXc-Node-325" class="mjx-mo"><span class="mjx-char MJXc-TeX-size1-R">(</span></span><span id="MJXc-Node-326" class="mjx-mfrac"><span class="mjx-box MJXc-stacked"><span class="mjx-numerator"><span id="MJXc-Node-327" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">1</span></span></span><span class="mjx-denominator"><span id="MJXc-Node-328" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">3</span></span></span></span></span><span id="MJXc-Node-329" class="mjx-mo"><span class="mjx-char MJXc-TeX-size1-R">)</span></span></span></span><span class="mjx-sup"><span id="MJXc-Node-330" class="mjx-mrow"><span id="MJXc-Node-331" class="mjx-mtext"></span><span id="MJXc-Node-332" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">4</span></span></span></span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mfrac><mn>1</mn><mn>3</mn></mfrac></mfenced><mrow><mtext>&thinsp;</mtext><mn>4</mn></mrow></msup></math></span></span></p> </td> <td valign="top" width="16.666666666666668%"> <p>2<sup>0</sup></p> </td> </tr> <tr> <td valign="top" width="25.96153846153846%"> <p>Cơ số</p> </td> <td valign="top" width="14.423076923076923%"> <p>&nbsp;<span id="MathJax-Element-18-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mtext&gt;&amp;#x2009;&lt;/mtext&gt;&lt;mfrac&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mfrac&gt;&lt;/math&gt;"><span id="MJXc-Node-333" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-334" class="mjx-mrow"><span id="MJXc-Node-335" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">&minus;</span></span><span id="MJXc-Node-336" class="mjx-mtext"></span><span id="MJXc-Node-337" class="mjx-mfrac"><span class="mjx-box MJXc-stacked"><span class="mjx-numerator"><span id="MJXc-Node-338" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">3</span></span></span><span class="mjx-denominator"><span id="MJXc-Node-339" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">2</span></span></span></span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&minus;</mo><mtext>&thinsp;</mtext><mfrac><mn>3</mn><mn>2</mn></mfrac></math></span></span></p> </td> <td valign="top" width="12.5%"> <p>0,1</p> </td> <td valign="top" width="13.782051282051283%"> <p>1,5</p> </td> <td valign="top" width="16.666666666666668%"> <p><span id="MathJax-Element-19-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mfrac&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mfrac&gt;&lt;/math&gt;"><span id="MJXc-Node-340" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-341" class="mjx-mrow"><span id="MJXc-Node-342" class="mjx-mfrac"><span class="mjx-box MJXc-stacked"><span class="mjx-numerator"><span id="MJXc-Node-343" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">1</span></span></span><span class="mjx-denominator"><span id="MJXc-Node-344" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">3</span></span></span></span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>3</mn></mfrac></math></span></span></p> </td> <td valign="top" width="16.666666666666668%"> <p>2</p> </td> </tr> <tr> <td valign="top" width="25.96153846153846%"> <p>Số mũ</p> </td> <td valign="top" width="14.423076923076923%"> <p>4</p> </td> <td valign="top" width="12.5%"> <p>3</p> </td> <td valign="top" width="13.782051282051283%"> <p>2</p> </td> <td valign="top" width="16.666666666666668%"> <p>4</p> </td> <td valign="top" width="16.666666666666668%"> <p>0</p> </td> </tr> <tr> <td valign="top" width="25.96153846153846%"> <p>Gi&aacute; trị của lũy thừa</p> </td> <td valign="top" width="14.423076923076923%"> <p><span id="MathJax-Element-20-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mfrac&gt;&lt;mn&gt;81&lt;/mn&gt;&lt;mn&gt;16&lt;/mn&gt;&lt;/mfrac&gt;&lt;/math&gt;"><span id="MJXc-Node-345" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-346" class="mjx-mrow"><span id="MJXc-Node-347" class="mjx-mfrac"><span class="mjx-box MJXc-stacked"><span class="mjx-numerator"><span id="MJXc-Node-348" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">81</span></span></span><span class="mjx-denominator"><span id="MJXc-Node-349" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">16</span></span></span></span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>81</mn><mn>16</mn></mfrac></math></span></span>&nbsp;</p> </td> <td valign="top" width="12.5%"> <p>0,001</p> </td> <td valign="top" width="13.782051282051283%"> <p>2,25</p> </td> <td valign="top" width="16.666666666666668%"> <p><span id="MathJax-Element-21-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mfrac&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mn&gt;81&lt;/mn&gt;&lt;/mfrac&gt;&lt;/math&gt;"><span id="MJXc-Node-350" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-351" class="mjx-mrow"><span id="MJXc-Node-352" class="mjx-mfrac"><span class="mjx-box MJXc-stacked"><span class="mjx-numerator"><span id="MJXc-Node-353" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">1</span></span></span><span class="mjx-denominator"><span id="MJXc-Node-354" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">81</span></span></span></span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>81</mn></mfrac></math></span></span></p> </td> <td valign="top" width="16.666666666666668%"> <p>1</p> </td> </tr> </tbody> </table>
Xem lời giải bài tập khác cùng bài
Hướng dẫn Giải Hoạt động 1 (Trang 17 SGK Toán 7, Bộ Cánh diều, Tập 1)
Xem lời giải
Hướng dẫn Giải Luyện tập - Vận dụng 1 (Trang 17 SGK Toán 7, Bộ Cánh diều, Tập 1)
Xem lời giải
Hướng dẫn Giải Luyện tập - Vận dụng 2 (Trang 18 SGK Toán 7, Bộ Cánh diều, Tập 1)
Xem lời giải
Hướng dẫn Giải Hoạt động 2 (Trang 18 SGK Toán 7, Bộ Cánh diều, Tập 1)
Xem lời giải
Hướng dẫn Giải Luyện tập - Vận dụng 3 (Trang 19 SGK Toán 7, Bộ Cánh diều, Tập 1)
Xem lời giải
Hướng dẫn Giải Hoạt động 3 (Trang 19 SGK Toán 7, Bộ Cánh diều, Tập 1)
Xem lời giải
Hướng dẫn Giải Luyện tập - Vận dụng 4 (Trang 19 SGK Toán 7, Bộ Cánh diều, Tập 1)
Xem lời giải
Hướng dẫn giải Bài 2 (Trang 20, SGK Toán 7, Tập 1 - Bộ Cánh Diều)
Xem lời giải
Hướng dẫn giải Bài 3 (Trang 20, SGK Toán 7, Tập 1 - Bộ Cánh Diều)
Xem lời giải
Hướng dẫn giải Bài 4 (Trang 20, SGK Toán 7, Tập 1 - Bộ Cánh Diều)
Xem lời giải
Hướng dẫn giải Bài 5 (Trang 20, SGK Toán 7, Tập 1 - Bộ Cánh Diều)
Xem lời giải
Hướng dẫn giải Bài 6 (Trang 20, SGK Toán 7, Tập 1 - Bộ Cánh Diều)
Xem lời giải
Hướng dẫn giải Bài 7 (Trang 20, SGK Toán 7, Tập 1 - Bộ Cánh Diều)
Xem lời giải
Hướng dẫn giải Bài 8 (Trang 21, SGK Toán 7, Tập 1 - Bộ Cánh Diều)
Xem lời giải
Hướng dẫn giải Bài 9 (Trang 21, SGK Toán 7, Tập 1 - Bộ Cánh Diều)
Xem lời giải
Hướng dẫn giải Bài 10 (Trang 21, SGK Toán 7, Tập 1 - Bộ Cánh Diều)
Xem lời giải
Hướng dẫn giải Bài 11 (Trang 21, SGK Toán 7, Tập 1 - Bộ Cánh Diều)
Xem lời giải