Hỏi gia sư
Gia sư 1-1
Chuyên đề
Trắc nghiệm
Tài liệu
Cửa hàng
Chọn lớp
Lớp 6
Lớp 7
Lớp 8
Lớp 9
Lớp 10
Lớp 11
Lớp 12
Đăng ký
Đăng nhập
Trang chủ
Hỏi gia sư
Gia sư 1-1
Chuyên đề
Trắc nghiệm
Tài liệu
Cửa hàng
Trang chủ
/
Giải bài tập
/ Lớp 12 / Toán học /
Bài 2: Tích phân
Bài 2: Tích phân
Hướng dẫn giải Bài 1 (Trang 112 SGK Toán Giải tích 12)
<p><strong>Bài 1 (Trang 112 SGK Toán Giải tích 12):</strong></p> <p>Tính các tích phân sau:</p> <p>a) <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow><mfrac><mn>1</mn><mn>2</mn></mfrac></msubsup><mroot><msup><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mi mathvariant="normal">x</mi><mo>)</mo></mrow><mn>2</mn></msup><mn>3</mn></mroot><mi>dx</mi></math>;</p> <p>b) <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>0</mn><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></msubsup><mi>sin</mi><mo>(</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac><mo>-</mo><mi mathvariant="normal">x</mi><mo>)</mo><mi>dx</mi></math>;</p> <p>c) <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mn>2</mn></msubsup><mfrac><mn>1</mn><mrow><mi mathvariant="normal">x</mi><mo>(</mo><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mfrac><mi>dx</mi><mo>;</mo></math></p> <p>d) <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>0</mn><mn>2</mn></msubsup><mi mathvariant="normal">x</mi><msup><mrow><mo>(</mo><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mn>2</mn></msup><mi>dx</mi></math>;</p> <p>e) <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mn>2</mn></msubsup><mfrac><mrow><mn>1</mn><mo>-</mo><mn>3</mn><mi mathvariant="normal">x</mi></mrow><msup><mrow><mo>(</mo><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mn>2</mn></msup></mfrac><mi>dx</mi></math>;</p> <p>g)<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mrow><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mrow><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></msubsup><mi>sin</mi><mn>3</mn><mi>xcos</mi><mn>5</mn><mi>xdx</mi></math>.</p> <p><strong>Hướng dẫn giải:</strong></p> <p>a) Đặt <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">u</mi><mo>=</mo><mn>1</mn><mo>-</mo><mi mathvariant="normal">x</mi><mo> </mo><mo>⇒</mo><mi>du</mi><mo>=</mo><mo>-</mo><mi>dx</mi><mo> </mo><mo>⇒</mo><mi>dx</mi><mo>=</mo><mo>-</mo><mi>du</mi></math></p> <p>Đổi cận:</p> <table style="border-collapse: collapse; width: 15%;" border="1"> <tbody> <tr> <td style="width: 14.3309%;">x</td> <td style="width: 85.6505%;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math></td> </tr> <tr> <td style="width: 14.3309%;">u</td> <td style="width: 85.6505%;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><mn>2</mn></mfrac></math> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math></td> </tr> </tbody> </table> <p>Vậy: <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow><mfrac><mn>1</mn><mn>2</mn></mfrac></msubsup><mroot><msup><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mi mathvariant="normal">x</mi><mo>)</mo></mrow><mn>2</mn></msup><mn>3</mn></mroot><mi>dx</mi><mo>=</mo><mo>-</mo><msubsup><mo>∫</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfrac><mn>3</mn><mn>2</mn></mfrac></msubsup><msup><mi mathvariant="normal">u</mi><mfrac><mn>2</mn><mn>3</mn></mfrac></msup><mi>du</mi><mo>=</mo><mfrac><mn>3</mn><mn>5</mn></mfrac><msup><mi mathvariant="normal">u</mi><mfrac><mn>5</mn><mn>3</mn></mfrac></msup><msubsup><mo>|</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfrac><mn>3</mn><mn>2</mn></mfrac></msubsup><mo> </mo><mo>=</mo><mfrac><mn>3</mn><mn>5</mn></mfrac><mi mathvariant="normal">u</mi><mroot><msup><mi mathvariant="normal">u</mi><mn>2</mn></msup><mn>3</mn></mroot><msubsup><mo>|</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfrac><mn>3</mn><mn>2</mn></mfrac></msubsup><mo>=</mo><mfrac><mn>3</mn><mn>5</mn></mfrac><mo>(</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mroot><mfrac><mn>9</mn><mn>4</mn></mfrac><mn>3</mn></mroot><mo> </mo><mo>-</mo><mo> </mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mroot><mfrac><mn>1</mn><mn>4</mn></mfrac><mn>3</mn></mroot><mo>)</mo></math>.</p> <p>b) Ta có: <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>0</mn><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></msubsup><mi>sin</mi><mo>(</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac><mo>-</mo><mi mathvariant="normal">x</mi><mo>)</mo><mi>dx</mi><mo>=</mo><mi>cos</mi><mo>(</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac><mo>-</mo><mi mathvariant="normal">x</mi><mo>)</mo><msubsup><mo>|</mo><mn>0</mn><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></msubsup><mo>=</mo><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac><mo>-</mo><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn></math></p> <p>c) <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mn>2</mn></msubsup><mfrac><mn>1</mn><mrow><mi mathvariant="normal">x</mi><mo>(</mo><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mfrac><mi>dx</mi><mo>=</mo><msubsup><mo>∫</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mn>2</mn></msubsup><mo>(</mo><mfrac><mn>1</mn><mi mathvariant="normal">x</mi></mfrac><mo>-</mo><mfrac><mn>1</mn><mrow><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>)</mo><mi>dx</mi><mo>=</mo><mi>ln</mi><mfenced open="|" close="|"><mfrac><mi mathvariant="normal">x</mi><mrow><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><msubsup><mo>|</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mn>2</mn></msubsup><mo>=</mo><mi>ln</mi><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>-</mo><mi>ln</mi><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>=</mo><mi>ln</mi><mn>2</mn></math></p> <p>d) <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>0</mn><mn>2</mn></msubsup><mi mathvariant="normal">x</mi><msup><mrow><mo>(</mo><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mn>2</mn></msup><mi>dx</mi><mo>=</mo><msubsup><mo>∫</mo><mn>0</mn><mn>2</mn></msubsup><mo>(</mo><msup><mi mathvariant="normal">x</mi><mn>3</mn></msup><mo>+</mo><mn>2</mn><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>+</mo><mi mathvariant="normal">x</mi><mo>)</mo><mi>dx</mi><mo>=</mo><mo>(</mo><mfrac><msup><mi mathvariant="normal">x</mi><mn>4</mn></msup><mn>4</mn></mfrac><mo>+</mo><mfrac><mrow><mn>2</mn><msup><mi mathvariant="normal">x</mi><mn>3</mn></msup></mrow><mn>3</mn></mfrac><mo>+</mo><mfrac><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mn>2</mn></mfrac><mo>)</mo><msubsup><mo>|</mo><mn>0</mn><mn>2</mn></msubsup><mo>=</mo><mfrac><mn>34</mn><mn>3</mn></mfrac></math></p> <p>e) Đặt <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">u</mi><mo>=</mo><mi mathvariant="normal">x</mi><mo>+</mo><mn>1</mn><mo> </mo><mo>⇒</mo><mi>du</mi><mo>=</mo><mi>dx</mi><mo>.</mo></math></p> <p>Đổi cận:</p> <table style="border-collapse: collapse; width: 15%;" border="1"> <tbody> <tr> <td style="width: 14.3309%;">x</td> <td style="width: 85.6505%;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math> 2</td> </tr> <tr> <td style="width: 14.3309%;">u</td> <td style="width: 85.6505%;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><mn>2</mn></mfrac></math> 3</td> </tr> </tbody> </table> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mn>2</mn></msubsup><mfrac><mrow><mn>1</mn><mo>-</mo><mn>3</mn><mi>x</mi></mrow><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>x</mi><mo>)</mo></mrow><mn>2</mn></msup></mfrac><mi>d</mi><mi>x</mi><mo>=</mo><msubsup><mo>∫</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mn>3</mn></msubsup><mfrac><mrow><mn>1</mn><mo>-</mo><mn>3</mn><mo>(</mo><mi>u</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><msup><mi>u</mi><mn>2</mn></msup></mfrac><mi>d</mi><mi>u</mi><mo>=</mo><msubsup><mo>∫</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mn>3</mn></msubsup><mo>(</mo><mfrac><mn>4</mn><msup><mi>u</mi><mn>2</mn></msup></mfrac><mo>-</mo><mfrac><mn>3</mn><mi>u</mi></mfrac><mo>)</mo><mi>d</mi><mi>u</mi><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>(</mo><mo>-</mo><mfrac><mn>4</mn><mi>u</mi></mfrac><mo>-</mo><mn>3</mn><mi>ln</mi><mfenced open="|" close="|"><mi>u</mi></mfenced><mo>)</mo><msubsup><mo>|</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mn>3</mn></msubsup><mo>=</mo><mo>-</mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mo>-</mo><mn>3</mn><mi>ln</mi><mn>3</mn><mo>+</mo><mfrac><mn>8</mn><mn>3</mn></mfrac><mo>+</mo><mn>3</mn><mi>ln</mi><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>=</mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mo>-</mo><mn>3</mn><mi>ln</mi><mn>2</mn></math></p> <p>g) <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mrow><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mrow><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></msubsup><mi>sin</mi><mn>3</mn><mi>xcos</mi><mn>5</mn><mi>xdx</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msubsup><mo>∫</mo><mrow><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mrow><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></msubsup><mo>(</mo><mi>sin</mi><mn>8</mn><mi mathvariant="normal">x</mi><mo>-</mo><mi>sin</mi><mn>2</mn><mi mathvariant="normal">x</mi><mo>)</mo><mi>dx</mi><mo>=</mo><mo>(</mo><mo>-</mo><mfrac><mn>1</mn><mn>16</mn></mfrac><mi>cos</mi><mn>8</mn><mi mathvariant="normal">x</mi><mo>+</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mi>cos</mi><mn>2</mn><mi mathvariant="normal">x</mi><mo>)</mo><msubsup><mo>|</mo><mrow><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mrow><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></msubsup><mo>=</mo><mn>0</mn><mo>.</mo></math></p>
Hướng dẫn Giải Bài 1 (Trang 112, SGK Toán Giải Tích 12)
GV:
GV colearn
Xem lời giải bài tập khác cùng bài
Hướng dẫn giải Bài 2 (Trang 112 SGK Toán Giải tích 12)
Xem lời giải
Hướng dẫn giải Bài 3 (Trang 113 SGK Toán Giải tích 12)
Xem lời giải
Hướng dẫn giải Bài 4 (Trang 113 SGK Toán Giải tích 12)
Xem lời giải
Hướng dẫn giải Bài 5 (Trang 113 SGK Toán Giải tích 12)
Xem lời giải
Hướng dẫn giải Bài 6 (Trang 113 SGK Toán Giải tích 12)
Xem lời giải
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 1 (Trang 112, SGK Toán Giải Tích 12)
GV:
GV colearn