Bài 6. Khái niệm về phép dời hình và hai hình bằng nhau
Hướng dẫn giải Bài 1 (Trang 23 SGK Toán Hình học 11)
<p>Trong mặt phẳng Oxy cho c&aacute;c điểm&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mfenced><mrow><mo>-</mo><mn>3</mn><mo>;</mo><mn>2</mn></mrow></mfenced><mo>,</mo><mo>&#160;</mo><mo>&#160;</mo><mi>B</mi><mfenced><mrow><mo>-</mo><mn>4</mn><mo>;</mo><mo>&#160;</mo><mn>5</mn></mrow></mfenced><mo>,</mo><mo>&#160;</mo><mi>C</mi><mfenced><mrow><mo>-</mo><mn>1</mn><mo>;</mo><mo>&#160;</mo><mn>3</mn></mrow></mfenced></math></p> <p>a) Chứng minh rằng c&aacute;c điểm&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>'</mo><mo>(</mo><mn>2</mn><mo>;</mo><mn>3</mn><mo>)</mo><mo>,</mo><mo>&#160;</mo><mo>&#160;</mo><mi>B</mi><mo>'</mo><mo>(</mo><mn>5</mn><mo>;</mo><mo>&#160;</mo><mn>4</mn><mo>)</mo><mo>&#160;</mo><mi>v</mi><mi>&#224;</mi><mo>&#160;</mo><mi>C</mi><mo>'</mo><mfenced><mrow><mn>3</mn><mo>;</mo><mo>&#160;</mo><mn>1</mn></mrow></mfenced></math>&nbsp;theo thứ tự l&agrave; ảnh của A, B v&agrave; C</p> <p>qua ph&eacute;p quay t&acirc;m O g&oacute;c&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>90</mn><mo>&#176;</mo></math></p> <p>b) Gọi tam gi&aacute;c&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>A</mi><mn>1</mn></msub><msub><mi>B</mi><mn>1</mn></msub><msub><mi>C</mi><mn>1</mn></msub></math>&nbsp;l&agrave; ảnh của tam gi&aacute;c ABC qua ph&eacute;p dời h&igrave;nh c&oacute; được bằng c&aacute;ch thực</p> <p>hiện li&ecirc;n tiếp ph&eacute;p quay t&acirc;m O g&oacute;c&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>90</mn><mo>&#176;</mo></math>&nbsp;v&agrave; ph&eacute;p đối xứng qua trục Ox. T&igrave;m toạ độ c&aacute;c đỉnh</p> <p>của tam gi&aacute;c&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>A</mi><mn>1</mn></msub><msub><mi>B</mi><mn>1</mn></msub><msub><mi>C</mi><mn>1</mn></msub></math></p> <p>Giải:</p> <p><img class="wscnph" src="https://static.colearn.vn:8413/v1.0/upload/library/24022022/anh-chup-man-hinh-2022-02-24-luc-164412-9jkzfx.png" /></p> <p>a) Ta c&oacute;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>O</mi><mi>A</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>(</mo><mo>-</mo><mn>3</mn><mo>;</mo><mo>&#160;</mo><mn>2</mn><mo>)</mo></math>,&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>O</mi><mi>A</mi><mo>'</mo><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfenced><mrow><mn>2</mn><mo>;</mo><mo>&#160;</mo><mn>3</mn></mrow></mfenced><mo>&#160;</mo><mi>v</mi><mi>&#224;</mi><mo>&#160;</mo><mover><mrow><mi>O</mi><mi>A</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>O</mi><mi>A</mi><mo>'</mo></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn></math>&nbsp;Từ đ&oacute; suy ra g&oacute;c lượng gi&aacute;c&nbsp;</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>O</mi><mi>A</mi><mo>;</mo><mo>&#160;</mo><mi>O</mi><mi>A</mi><mo>'</mo></mrow></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mn>90</mn><mo>&#176;</mo></math></p> <p>Mặt kh&aacute;c: OA = OA' =&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>13</mn></msqrt></math>. Do đ&oacute; ph&eacute;p quay t&acirc;m O g&oacute;c&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>90</mn><mo>&#176;</mo></math>&nbsp;biến A th&agrave;nh A'</p> <p>Tương tự&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>O</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>O</mi><mi>B</mi><mo>'</mo></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>O</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>O</mi><mi>C</mi><mo>'</mo></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn></math>&nbsp;v&agrave; &nbsp;OB = OB' =&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>41</mn></msqrt></math>; &nbsp;OC = OC' =&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>10</mn></msqrt></math></p> <p>Do đ&oacute;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Q</mi><mfenced><mrow><mi>O</mi><mo>,</mo><mo>&#160;</mo><mo>-</mo><mn>90</mn><mo>&#176;</mo></mrow></mfenced></msub><mo>:</mo><mo>&#160;</mo><mi>B</mi><mo>&#8614;</mo><mi>B</mi><mo>'</mo></math></p> <p><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span>&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>&#160;</mo><mo>&#8614;</mo><mo>&#160;</mo><mi>C</mi><mo>'</mo></math></p> <p>b) Gọi tam gi&aacute;c&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>A</mi><mn>1</mn></msub><msub><mi>B</mi><mn>1</mn></msub><msub><mi>C</mi><mn>1</mn></msub></math>&nbsp;l&agrave; ảnh của tam gi&aacute;c A'B'C' qua ph&eacute;p đối xứng trục Ox. Khi đ&oacute;</p> <p>&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>A</mi><mn>1</mn></msub><mfenced><mrow><mn>2</mn><mo>;</mo><mo>&#160;</mo><mo>-</mo><mn>3</mn></mrow></mfenced><mo>,</mo><mo>&#160;</mo><mo>&#160;</mo><msub><mi>B</mi><mn>1</mn></msub><mfenced><mrow><mn>5</mn><mo>;</mo><mo>&#160;</mo><mo>-</mo><mn>4</mn></mrow></mfenced><mo>,</mo><mo>&#160;</mo><mo>&#160;</mo><msub><mi>C</mi><mn>1</mn></msub><mo>(</mo><mn>3</mn><mo>;</mo><mo>&#160;</mo><mo>-</mo><mn>1</mn><mo>)</mo></math></p>
Hướng dẫn giải bài 1 (trang 23, SGK Hình 11)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn giải bài 1 (trang 23, SGK Hình 11)
GV: GV colearn