Bài 20. Động học của chuyển động tròn
Hướng dẫn giải Thảo luận 2 (Trang 127 SGK Vật lý, Bộ Chân trời sáng tạo)
<p>N&ecirc;u c&ocirc;ng thức t&iacute;nh chiều d&agrave;i cung tr&ograve;n s m&agrave; c&aacute;c em đ&atilde; được học. Trong c&ocirc;ng thức n&agrave;y, đơn vị của g&oacute;c l&agrave; g&igrave;? H&atilde;y đề xuất c&ocirc;ng thức t&iacute;nh chiều d&agrave;i cung tr&ograve;n trực tiếp v&agrave; đơn giản hơn.</p> <p><img class="wscnph" style="max-width: 100%; display: block; margin-left: auto; margin-right: auto;" src="https://static.colearn.vn:8413/v1.0/upload/library/23062022/f44c9ed0-1e7c-41da-9f67-ba48200feded.PNG" /></p> <p><strong>Lời giải chi tiết:</strong></p> <p>- C&ocirc;ng thức t&iacute;nh chiều d&agrave;i cung tr&ograve;n s đ&atilde; được học l&agrave;:&nbsp;<span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 19.36px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mi&gt;&amp;#x03C0;&lt;/mi&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mi&gt;&amp;#x03B1;&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mn&gt;180&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/math&gt;"><span id="MJXc-Node-1" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mi"></span></span></span><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mo>=</mo><mfrac><mrow><mi>&#960;</mi><mo>.</mo><mi>R</mi><mo>.</mo><mi>&#945;</mi></mrow><mn>180</mn></mfrac></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow class="MJX-TeXAtom-ORD"><mn></mn></mrow></mfrac></math></span></p> <p>- Trong c&ocirc;ng thức tr&ecirc;n, &alpha; được t&iacute;nh theo đơn vị l&agrave; độ.</p> <p>- C&ocirc;ng thức t&iacute;nh chiều d&agrave;i đơn giản hơn:&nbsp;<span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 19.36px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;&amp;#x03B1;&lt;/mi&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-16" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-17" class="mjx-mrow"><span id="MJXc-Node-18" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">s</span></span><span id="MJXc-Node-19" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-20" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">&alpha;</span></span><span id="MJXc-Node-21" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">.</span></span><span id="MJXc-Node-22" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">R</span></span></span></span></span>; trong đ&oacute; &alpha; c&oacute; đơn vị l&agrave; rad.</p> <p>Với&nbsp;<span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 19.36px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msup&gt;&lt;mi&gt;&amp;#x03B1;&lt;/mi&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;&amp;#x03B1;&lt;/mi&gt;&lt;mo stretchy=&quot;false&quot;&gt;(&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo stretchy=&quot;false&quot;&gt;)&lt;/mo&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msup&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mn&gt;180&lt;/mn&gt;&lt;/mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mi&gt;&amp;#x03C0;&lt;/mi&gt;&lt;/mfrac&gt;&lt;/math&gt;"><span id="MJXc-Node-23" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-24" class="mjx-mrow"><span id="MJXc-Node-25" class="mjx-texatom"><span id="MJXc-Node-26" class="mjx-mrow"><span id="MJXc-Node-27" class="mjx-msubsup"><span class="mjx-base"><span id="MJXc-Node-28" class="mjx-mi"></span></span></span></span></span><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>&#945;</mi><mn>0</mn></msup><mo>=</mo><mi>&#945;</mi><mo>(</mo><mi>r</mi><mi>a</mi><mi>d</mi><mo>)</mo><mo>.</mo><mfrac><msup><mn>180</mn><mn>0</mn></msup><mi>&#960;</mi></mfrac></math><span id="MJXc-Node-38" class="mjx-mfrac MJXc-space1"><span class="mjx-box MJXc-stacked"><span class="mjx-denominator"><span id="MJXc-Node-48" class="mjx-mi"></span></span></span></span></span></span></span></p>
Xem lời giải bài tập khác cùng bài