Ôn Tập Chương 1
Hướng dẫn giải Bài 88 (Trang 111 SGK Toán Hình học 8, Tập 1)
<p><strong class="content_question">Đề b&agrave;i</strong></p> <p>Cho tứ gi&aacute;c&nbsp;<span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-1" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-4" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-5" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-6" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span></span></span></span>. Gọi&nbsp;<span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-7" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-8" class="mjx-mrow"><span id="MJXc-Node-9" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">E</span></span><span id="MJXc-Node-10" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-11" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">F</span></span><span id="MJXc-Node-12" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-13" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">G</span></span><span id="MJXc-Node-14" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-15" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">H</span></span></span></span></span>&nbsp;theo thứ tự l&agrave; trung điểm của&nbsp;<span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/math&gt;"><span id="MJXc-Node-16" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-17" class="mjx-mrow"><span id="MJXc-Node-18" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-19" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-20" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-21" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-22" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-23" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-24" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-25" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span><span id="MJXc-Node-26" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-27" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">D</span></span><span id="MJXc-Node-28" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-29" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">.</span></span></span></span></span>&nbsp;C&aacute;c đường ch&eacute;o&nbsp;<span id="MathJax-Element-4-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-30" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-31" class="mjx-mrow"><span id="MJXc-Node-32" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-33" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-34" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-35" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-36" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span></span></span></span>của tứ gi&aacute;c&nbsp;<span id="MathJax-Element-5-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-37" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-38" class="mjx-mrow"><span id="MJXc-Node-39" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-40" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-41" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-42" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span></span></span></span>&nbsp;c&oacute; điều kiện g&igrave; th&igrave;&nbsp;<span id="MathJax-Element-6-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-43" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-44" class="mjx-mrow"><span id="MJXc-Node-45" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">E</span></span><span id="MJXc-Node-46" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">F</span></span><span id="MJXc-Node-47" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">G</span></span><span id="MJXc-Node-48" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">H</span></span></span></span></span>&nbsp;l&agrave;:</p> <p>a) H&igrave;nh chữ nhật?</p> <p>b) H&igrave;nh thoi?&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</p> <p>c) H&igrave;nh vu&ocirc;ng</p> <p><strong class="content_detail">Lời giải chi tiết</strong></p> <p><img src="https://img.loigiaihay.com/picture/2018/0713/b88-trang-111-sgk-toan-8-t-1-c2.jpg" alt="" /></p> <p>+ Ta c&oacute;: EB=EA, FB=FC (gt)<br />Do đ&oacute; EF l&agrave; đường trung b&igrave;nh của tam gi&aacute;c ABC<br />Suy ra <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>F</mi><mo>/</mo><mo>/</mo><mi>A</mi><mi>C</mi><mo>,</mo><mi>E</mi><mi>F</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>A</mi><mi>C</mi></math> (t&iacute;nh chất đường trung b&igrave;nh của tam gi&aacute;c)<br />+ Ta c&oacute;: <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>H</mi><mo>&#8290;</mo><mi>D</mi><mo>=</mo><mi>H</mi><mo>&#8290;</mo><mi>A</mi><mo>,</mo><mi>G</mi><mo>&#8290;</mo><mi>D</mi><mo>=</mo><mi>G</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mrow><mo>(</mo><mi>gt</mi><mo>)</mo></mrow></mstyle></math><br />Do đ&oacute; HG l&agrave; đường trung b&igrave;nh của tam gi&aacute;c ADC<br />Suy ra <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>H</mi><mi>G</mi><mo>/</mo><mo>/</mo><mi>A</mi><mi>C</mi><mo>,</mo><mi>H</mi><mi>G</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>A</mi><mi>C</mi></mstyle></math> (t&iacute;nh chất đường trung b&igrave;nh của tam gi&aacute;c)</p> <p>Do đ&oacute; EF//HG, EF=HG n&ecirc;n EFGH l&agrave; h&igrave;nh b&igrave;nh h&agrave;nh.</p> <p>+ Ta c&oacute;: EB=EA, AH=HD (gt)<br />Do đ&oacute; EH l&agrave; đường trung b&igrave;nh của tam gi&aacute;c ABD.<br />Suy ra <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>E</mi><mi>H</mi><mo>/</mo><mo>/</mo><mi>B</mi><mi>D</mi><mo>,</mo><mi>E</mi><mi>H</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>B</mi><mi>D</mi></mstyle></math> (t&iacute;nh chất đường trung b&igrave;nh của tam gi&aacute;c)<br />a) H&igrave;nh b&igrave;nh h&agrave;nh EFGH l&agrave; h&igrave;nh chữ nhật <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8660;</mo><mi>E</mi><mo>&#8290;</mo><mi>H</mi><mo>&#10178;</mo><mi>E</mi><mo>&#8290;</mo><mi>F</mi></mstyle></math> <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8660;</mo><mi>A</mi><mo>&#8290;</mo><mi>C</mi><mo>&#10178;</mo><mi>B</mi><mo>&#8290;</mo><mi>D</mi></mstyle></math> (v&igrave; EH//BD; EF//AC)</p> <p>Điều kiện phải t&igrave;m: c&aacute;c đường ch&eacute;o AC v&agrave; BD vu&ocirc;ng g&oacute;c với nhau.<br />b) H&igrave;nh b&igrave;nh h&agrave;nh EFGH l&agrave; h&igrave;nh thoi <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8660;</mo><mi>E</mi><mo>&#8290;</mo><mi>F</mi><mo>=</mo><mi>E</mi><mo>&#8290;</mo><mi>H</mi></mstyle></math> <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8660;</mo><mi>A</mi><mo>&#8290;</mo><mi>C</mi><mo>=</mo><mi>B</mi><mo>&#8290;</mo><mi>D</mi></mstyle></math> (v&igrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>C</mi><mo>,</mo><mi>E</mi><mo>&#8290;</mo><mi>H</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>D</mi></math>)<br />Điều kiện phải t&igrave;m: c&aacute;c đường ch&eacute;o AC v&agrave; BD bằng nhau.</p> <p>c) H&igrave;nh b&igrave;nh h&agrave;nh EFGH l&agrave; h&igrave;nh vu&ocirc;ng khi v&agrave; chỉ khi<br />EFGH vừa l&agrave; h&igrave;nh chữ nhật đồng thời l&agrave; h&igrave;nh thoi. <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>A</mi><mo>&#8290;</mo><mi>C</mi><mo>&#10178;</mo><mi>B</mi><mo>&#8290;</mo><mi>D</mi></mstyle></math> v&agrave; AC=BD.<br />Điều kiện phải t&igrave;m: c&aacute;c đường ch&eacute;o AC, BD bằng nhau v&agrave; vu&ocirc;ng g&oacute;c với nhau.<br /><br /><br /></p>
Xem lời giải bài tập khác cùng bài