Bài 2: Mặt phẳng tọa độ. Đồ thị của hàm số
Bài 5 trang 65 Toán 8 Tập 1
<p><strong>B&agrave;i 5 trang 65 To&aacute;n 8 Tập 1:&nbsp;</strong>Cho tam gi&aacute;c ABC như H&igrave;nh 12.</p> <p><img src="https://vietjack.com/toan-8-cd/images/bai-5-trang-65-toan-lop-8-tap-1.PNG" alt="B&agrave;i 5 trang 65 To&aacute;n 8 Tập 1 C&aacute;nh diều | Giải To&aacute;n 8" /></p> <p>a) X&aacute;c định tọa độ c&aacute;c điểm A, B, C.</p> <p>b) Tam gi&aacute;c ABC c&oacute; l&agrave; tam gi&aacute;c vu&ocirc;ng hay kh&ocirc;ng?</p> <p>c) X&aacute;c định tọa độ điểm D để tứ gi&aacute;c ABCD l&agrave; h&igrave;nh chữ nhật.</p> <p><strong>Lời giải:</strong></p> <p>a) D&oacute;ng c&aacute;c điểm A, B, C l&ecirc;n hai trục Ox, Oy ta c&oacute; tọa độ c&aacute;c điểm A, B, C l&agrave; A(&ndash; 2; 3), B(&ndash; 2; 0), C(2; 0).</p> <p>b) H&igrave;nh chiếu của điểm A tr&ecirc;n trục ho&agrave;nh l&agrave; điểm &ndash; 2 tr&ecirc;n trục Ox.</p> <p>M&agrave; điểm B cũng c&oacute; ho&agrave;nh độ bằng &ndash; 2 n&ecirc;n AB&nbsp;&perp;&nbsp;BC.</p> <p>Tam gi&aacute;c ABC c&oacute;&nbsp;<span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mover accent=&quot;true&quot;&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;^&lt;/mo&gt;&lt;/mover&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;90&lt;/mn&gt;&lt;mo&gt;&amp;#xB0;&lt;/mo&gt;&lt;/math&gt;"><span id="MJXc-Node-1" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mover"><span class="mjx-stack"><span class="mjx-over"><span id="MJXc-Node-8" class="mjx-mo"></span></span></span></span></span></span><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi><mi>C</mi></mrow><mo>^</mo></mover><mo>=</mo><mn>90</mn><mo>&deg;</mo></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mo></mo></math></span>&nbsp;(v&igrave;&nbsp;AB&nbsp;&perp;&nbsp;BC) n&ecirc;n&nbsp;tam gi&aacute;c&nbsp;ABC&nbsp;vu&ocirc;ng&nbsp;tại A.</p> <p>c)&nbsp;Tam gi&aacute;c&nbsp;ABC c&oacute;&nbsp;<span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mover accent=&quot;true&quot;&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;^&lt;/mo&gt;&lt;/mover&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;90&lt;/mn&gt;&lt;mo&gt;&amp;#xB0;&lt;/mo&gt;&lt;/math&gt;"><span id="MJXc-Node-12" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-13" class="mjx-mrow"><span id="MJXc-Node-14" class="mjx-mover"><span class="mjx-stack"><span class="mjx-over"><span id="MJXc-Node-19" class="mjx-mo"></span></span></span></span></span></span><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi><mi>C</mi></mrow><mo>^</mo></mover><mo>=</mo><mn>90</mn><mo>&deg;</mo></math><math xmlns="http://www.w3.org/1998/Math/MathML"><mo></mo></math></span>&nbsp;n&ecirc;n để&nbsp;tứ gi&aacute;c ABCD l&agrave; h&igrave;nh chữ nhật th&igrave;&nbsp;<span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mover accent=&quot;true&quot;&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;^&lt;/mo&gt;&lt;/mover&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;90&lt;/mn&gt;&lt;mo&gt;&amp;#xB0;&lt;/mo&gt;&lt;mo&gt;;&lt;/mo&gt;&lt;mtext&gt;&amp;#x2009;&amp;#x2009;&lt;/mtext&gt;&lt;mover accent=&quot;true&quot;&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;^&lt;/mo&gt;&lt;/mover&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;90&lt;/mn&gt;&lt;mo&gt;&amp;#xB0;&lt;/mo&gt;&lt;/math&gt;"><span id="MJXc-Node-23" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-24" class="mjx-mrow"><span id="MJXc-Node-25" class="mjx-mover"><span class="mjx-over"><span id="MJXc-Node-30" class="mjx-mo"></span></span></span></span></span><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>D</mi><mi>A</mi><mi>B</mi></mrow><mo>^</mo></mover><mo>=</mo><mn>90</mn><mo>&deg;</mo></math><span style="font-family: math;">;</span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi><br /></mi></mrow></mover></math></span></span>&nbsp;hay&nbsp;AB&nbsp;&perp;&nbsp;AD;&nbsp;BC&nbsp;&perp;&nbsp;CD.</p> <p>&bull;&nbsp;Qua điểm&nbsp;A, ta kẻ đường thẳng vu&ocirc;ng g&oacute;c với trục Oy.</p> <p>&bull;&nbsp;Qua điểm&nbsp;C, ta kẻ đường thẳng vu&ocirc;ng g&oacute;c với trục Ox.</p> <p>&nbsp;Hai đường thẳng n&agrave;y cắt nhau tại điểm D.</p> <p>&bull;&nbsp;AD cắt trục Oy tại điểm 3 n&ecirc;n điểm D c&oacute; tung độ bằng 3.</p> <p>&bull;&nbsp;CD cắt trục Ox tại điểm 2 n&ecirc;n điểm D c&oacute; ho&agrave;nh độ bằng 2.</p> <p>Do đ&oacute;, tọa điểm D l&agrave; D(2; 3)</p>
Xem lời giải bài tập khác cùng bài