Hướng dẫn giải Bài 1 (Trang 88 SGK Toán 6, Bộ Chân Trời Sáng Tạo, Tập 2)
<p><strong>Bài 1 (Trang 92 SGK Toán lớp 6 Tập 2 - Bộ Chân trời sáng tạo):</strong></p>
<p>Lập bảng thống kê các yếu tố của các góc trong mỗi hình dưới đây (theo mẫu).</p>
<p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/13032022/b1-V91Xqw.png" /></p>
<table style="border-collapse: collapse; width: 100%;" border="1">
<tbody>
<tr>
<td style="width: 10.7798%; text-align: center;"><strong>Hình</strong></td>
<td style="width: 15.8115%; text-align: center;"><strong>Tên góc</strong></td>
<td style="width: 20.6564%; text-align: center;"><strong>Đỉnh</strong></td>
<td style="width: 22.7064%; text-align: center;"><strong>Cạnh</strong></td>
<td style="width: 30.0459%; text-align: center;"><strong>Kí hiệu góc</strong></td>
</tr>
<tr>
<td style="width: 10.7798%; text-align: center;">a)</td>
<td style="width: 15.8115%; text-align: center;">góc BPC</td>
<td style="width: 20.6564%; text-align: center;">P </td>
<td style="width: 22.7064%; text-align: center;">PB, PC</td>
<td style="width: 30.0459%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>P</mi><mo>^</mo></mover><mo>,</mo><mo> </mo><mover><mrow><mi>B</mi><mi>P</mi><mi>C</mi></mrow><mo>^</mo></mover></math></td>
</tr>
<tr>
<td style="width: 10.7798%; text-align: center;">b)</td>
<td style="width: 15.8115%; text-align: center;"> </td>
<td style="width: 20.6564%; text-align: center;"> </td>
<td style="width: 22.7064%; text-align: center;"> </td>
<td style="width: 30.0459%; text-align: center;"> </td>
</tr>
<tr>
<td style="width: 10.7798%; text-align: center;">c)</td>
<td style="width: 15.8115%; text-align: center;"> </td>
<td style="width: 20.6564%; text-align: center;"> </td>
<td style="width: 22.7064%; text-align: center;"> </td>
<td style="width: 30.0459%; text-align: center;"> </td>
</tr>
</tbody>
</table>
<p> </p>
<p><em><strong>Hướng dẫn giải:</strong></em></p>
<p>Hình b) tạo bởi ba tia OG, OE, OF chung gốc O tạo ra ba góc: Góc EOF, góc FOG, góc GOE.</p>
<ul>
<li>Góc EOF có đỉnh: O, cạnh: OE, OF. Kí hiệu: <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>E</mi><mi>O</mi><mi>F</mi></mrow><mo>^</mo></mover></math>.</li>
<li>Góc FOG có đỉnh: O, cạnh: OF, OG. Kí hiệu: <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>F</mi><mi>O</mi><mi>G</mi></mrow><mo>^</mo></mover></math>.</li>
<li>Góc GOE có đỉnh: O, cạnh: OG, OE. Kí hiệu: <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>G</mi><mi>O</mi><mi>E</mi></mrow><mo>^</mo></mover></math>.</li>
</ul>
<p>Hình c) tạo bởi các cạnh AB, AC, AD, BC, BD tạo ra tám góc: Góc CAD, Góc ACD, Góc CAB, Góc ACB, Góc ABC, Góc BAD, Góc BCD.</p>
<ul>
<li>Góc CAD có đỉnh: A, cạnh: AC, AD. Kí hiệu: <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>C</mi><mi>A</mi><mi>D</mi></mrow><mo>^</mo></mover><mo>.</mo></math></li>
<li>Góc ACD có đỉnh: C, cạnh: AC, AD. Kí hiệu: <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>C</mi><mi>D</mi></mrow><mo>^</mo></mover></math>.</li>
<li>Góc CAB có đỉnh: A, cạnh: AC, AB. Kí hiệu: <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>C</mi><mi>A</mi><mi>B</mi></mrow><mo>^</mo></mover></math>.</li>
<li>Góc ACB có đỉnh: C, cạnh: AC, CB. Kí hiệu: <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>C</mi><mi>B</mi></mrow><mo>^</mo></mover></math>.</li>
<li>Góc ABC có đỉnh: B, cạnh: AB, AC. Kí hiệu: <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi><mi>C</mi></mrow><mo>^</mo></mover></math>.</li>
<li>Góc BAD có đỉnh: A, cạnh: AB, AD. Kí hiệu: <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>A</mi><mi>D</mi></mrow><mo>^</mo></mover></math>.</li>
<li>Góc BCD có đỉnh: C, cạnh: BC, BD. Kí hiệu: <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>C</mi><mi>D</mi></mrow><mo>^</mo></mover></math>.</li>
</ul>
<p>Ta có bảng sau:</p>
<table style="border-collapse: collapse; width: 53.9491%;" border="1">
<tbody>
<tr>
<td style="width: 15.9865%; text-align: center;"><strong>Hình</strong></td>
<td style="width: 16.7408%; text-align: center;"><strong>Tên góc</strong></td>
<td style="width: 18.5455%; text-align: center;"><strong>Đỉnh</strong></td>
<td style="width: 21.6364%; text-align: center;"><strong>Cạnh</strong></td>
<td style="width: 27.0909%; text-align: center;"><strong>Kí hiệu góc</strong></td>
</tr>
<tr>
<td style="width: 15.9865%; text-align: center;">a)</td>
<td style="width: 16.7408%; text-align: center;">BPC</td>
<td style="width: 18.5455%; text-align: center;">P</td>
<td style="width: 21.6364%; text-align: center;">PB, PC</td>
<td style="width: 27.0909%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>P</mi><mo>^</mo></mover><mo>,</mo><mo> </mo><mover><mrow><mi>B</mi><mi>P</mi><mi>C</mi></mrow><mo>^</mo></mover></math></td>
</tr>
<tr>
<td style="width: 15.9865%; text-align: center;">b)</td>
<td style="width: 16.7408%; text-align: center;">
<p>EOF</p>
<p>FOG</p>
<p>GOE</p>
</td>
<td style="width: 18.5455%; text-align: center;">
<p>O</p>
<p>O</p>
<p>O</p>
</td>
<td style="width: 21.6364%; text-align: center;">
<p>OE, OF</p>
<p>OF, OG</p>
<p>OG, OE</p>
</td>
<td style="width: 27.0909%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>O</mi><mo>^</mo></mover><mo>,</mo><mo> </mo><mover><mrow><mi>E</mi><mi>O</mi><mi>F</mi></mrow><mo>^</mo></mover><mspace linebreak="newline"/><mover><mi>O</mi><mo>^</mo></mover><mo>,</mo><mo> </mo><mover><mrow><mi>F</mi><mi>O</mi><mi>G</mi></mrow><mo>^</mo></mover><mspace linebreak="newline"/><mover><mi>O</mi><mo>^</mo></mover><mo>,</mo><mo> </mo><mover><mrow><mi>G</mi><mi>O</mi><mi>E</mi></mrow><mo>^</mo></mover></math></td>
</tr>
<tr>
<td style="width: 15.9865%; text-align: center;">c)</td>
<td style="width: 16.7408%; text-align: center;">
<p>CAD</p>
<p>ACD</p>
<p>ADC</p>
<p>CAB</p>
<p>ACB</p>
<p>ABC</p>
<p>BAD</p>
<p>BCD</p>
</td>
<td style="width: 18.5455%; text-align: center;">
<p>A</p>
<p>C</p>
<p>D</p>
<p>A</p>
<p>C</p>
<p>B</p>
<p>A</p>
<p>C</p>
</td>
<td style="width: 21.6364%; text-align: center;">
<p>AC, AD</p>
<p>AC, AD</p>
<p>AD, AC</p>
<p>AC, AB</p>
<p>AB, AC</p>
<p>AB, AD</p>
<p>BC, BD</p>
</td>
<td style="width: 27.0909%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>A</mi><mo>^</mo></mover><mo>,</mo><mo> </mo><mover><mrow><mi>C</mi><mi>A</mi><mi>D</mi></mrow><mo>^</mo></mover><mspace linebreak="newline"/><mover><mi>C</mi><mo>^</mo></mover><mo>,</mo><mo> </mo><mover><mrow><mi>A</mi><mi>C</mi><mi>D</mi></mrow><mo>^</mo></mover><mspace linebreak="newline"/><mover><mi>D</mi><mo>^</mo></mover><mo>,</mo><mo> </mo><mover><mrow><mi>A</mi><mi>D</mi><mi>C</mi></mrow><mo>^</mo></mover><mspace linebreak="newline"/><mover><mi>A</mi><mo>^</mo></mover><mo>,</mo><mo> </mo><mover><mrow><mi>C</mi><mi>A</mi><mi>B</mi></mrow><mo>^</mo></mover><mspace linebreak="newline"/><mover><mi>C</mi><mo>^</mo></mover><mo>,</mo><mo> </mo><mover><mrow><mi>A</mi><mi>C</mi><mi>B</mi></mrow><mo>^</mo></mover><mspace linebreak="newline"/><mover><mi>B</mi><mo>^</mo></mover><mo>,</mo><mo> </mo><mover><mrow><mi>A</mi><mi>B</mi><mi>C</mi></mrow><mo>^</mo></mover><mspace linebreak="newline"/><mover><mi>A</mi><mo>^</mo></mover><mo>,</mo><mo> </mo><mover><mrow><mi>B</mi><mi>A</mi><mi>D</mi></mrow><mo>^</mo></mover><mspace linebreak="newline"/><mover><mi>C</mi><mo>^</mo></mover><mo>,</mo><mo> </mo><mover><mrow><mi>B</mi><mi>C</mi><mi>D</mi></mrow><mo>^</mo></mover><mo>.</mo></math></td>
</tr>
</tbody>
</table>