Lớp 6
Lớp 7
Lớp 8
Lớp 9
Lớp 10
Lớp 11
Lớp 12
Bài 1 (Trang 112 SGK Toán Giải tích 12):
Tính các tích phân sau:
a) ∫-1212(1-x)23dx;
b) ∫0π2sin(π4-x)dx;
c) ∫1221x(x+1)dx;
d) ∫02x(x+1)2dx;
e) ∫1221-3x(x+1)2dx;
g)∫-π2π2sin3xcos5xdx.
Hướng dẫn giải:
a) Đặt u=1-x ⇒du=-dx ⇒dx=-du
Đổi cận:
Vậy: ∫-1212(1-x)23dx=-∫1232u23du=35u53|1232 =35uu23|1232=35(32943 - 12143).
b) Ta có: ∫0π2sin(π4-x)dx=cos(π4-x)|0π2=22-22 = 0
c) ∫1221x(x+1)dx=∫122(1x-1x+1)dx=lnxx+1|122=ln23-ln13=ln2
d) ∫02x(x+1)2dx=∫02(x3+2x2+x)dx=(x44+2x33+x22)|02=343
e) Đặt u=x+1 ⇒du=dx.
∫1221-3x(1+x)2dx=∫3231-3(u-1)u2du=∫323(4u2-3u)du(-4u-3lnu)|323=-43-3ln3+83+3ln32=43-3ln2
g) ∫-π2π2sin3xcos5xdx=12∫-π2π2(sin8x-sin2x)dx=(-116cos8x+14cos2x)|-π2π2=0.
This is a modal window.
Beginning of dialog window. Escape will cancel and close the window.
End of dialog window.