Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Hướng dẫn giải Hoạt động 2 (Trang 56 SGK Toán Hình học 11)
<p><strong class="content_question">Đề b&agrave;i</strong></p> <p>Cho tứ diện <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mi>C</mi><mi>D</mi></math>, chứng minh hai đường thẳng <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi></math>&nbsp;v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mi>D</mi></math>&nbsp;ch&eacute;o nhau. Chỉ ra cặp đường thẳng ch&eacute;o nhau kh&aacute;c</p> <p>của tứ diện n&agrave;y (h.2.29).</p> <p><img src="https://img.loigiaihay.com/picture/2018/0915/bai-2-trang-56.PNG" alt="" width="245" height="279" /></p> <p><strong class="content_detail">Lời giải chi tiết</strong></p> <p>Giả sử phản chứng, hai đường thẳng <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi></math>&nbsp;v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mi>D</mi></math>&nbsp;kh&ocirc;ng ch&eacute;o nhau, nghĩa l&agrave; tồn tại một mặt phẳng <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>&alpha;</mi></mfenced></math>&nbsp;chứa hai</p> <p>đường thẳng <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi></math>&nbsp;v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mi>D</mi></math>.</p> <p>Khi đ&oacute;&nbsp;</p> <p><span id="MathJax-Element-11-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mtable columnalign=&quot;left&quot; rowspacing=&quot;4pt&quot; columnspacing=&quot;1em&quot;&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;&amp;#x2282;&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;&amp;#x03B1;&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mo&gt;&amp;#x2282;&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;&amp;#x03B1;&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;mo fence=&quot;true&quot; stretchy=&quot;true&quot; symmetric=&quot;true&quot;&gt;&lt;/mo&gt;&lt;/mrow&gt;&lt;mo stretchy=&quot;false&quot;&gt;&amp;#x21D2;&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mtable columnalign=&quot;left&quot; rowspacing=&quot;4pt&quot; columnspacing=&quot;1em&quot;&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;&amp;#x2208;&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;&amp;#x03B1;&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mo&gt;&amp;#x2208;&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;&amp;#x03B1;&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;mo fence=&quot;true&quot; stretchy=&quot;true&quot; symmetric=&quot;true&quot;&gt;&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>A</mi><mi>B</mi><mo>&sub;</mo><mfenced><mi>&alpha;</mi></mfenced></mtd></mtr><mtr><mtd><mi>C</mi><mi>D</mi><mo>&sub;</mo><mfenced><mi>&alpha;</mi></mfenced></mtd></mtr></mtable></mfenced><mo>&rArr;</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>A</mi><mo>,</mo><mi>B</mi><mo>&isin;</mo><mfenced><mi>&alpha;</mi></mfenced></mtd></mtr><mtr><mtd><mi>C</mi><mo>,</mo><mi>D</mi><mo>&isin;</mo><mfenced><mi>&alpha;</mi></mfenced></mtd></mtr></mtable></mfenced></math></span></p> <p>Hay bốn điểm <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>,</mo><mi>B</mi><mo>,</mo><mi>C</mi><mo>,</mo><mi>D</mi></math>&nbsp;đồng phẳng.</p> <p>Điều n&agrave;y m&acirc;u thuẫn với giả thiết <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mi>C</mi><mi>D</mi></math>&nbsp;l&agrave; tứ diện.</p> <p>Vậy <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi></math>&nbsp;v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mi>D</mi></math>&nbsp;ch&eacute;o nhau.</p> <p>C&aacute;c cặp đường thẳng ch&eacute;o nhau kh&aacute;c của tứ diện n&agrave;y: <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>C</mi></math>&nbsp;v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mi>D</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mi>C</mi></math>&nbsp;v&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>D</mi></math><span id="MathJax-Element-19-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-132" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-133" class="mjx-mrow"><span id="MJXc-Node-134" class="mjx-mi"></span></span></span></span></p>
Xem lời giải bài tập khác cùng bài