Bài 3. Cấp số cộng
Hướng dẫn giải Bài 3 (Trang 97 SGK Toán Đại số & Giải tích 11)
<p>Trong c&aacute;c b&agrave;i to&aacute;n về cấp số cộng, ta thường gặp năm đại lượng&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>1</mn></msub><mo>,</mo><mo>&#160;</mo><mi>d</mi><mo>,</mo><mo>&#160;</mo><mi>n</mi><mo>,</mo><mo>&#160;</mo><msub><mi>u</mi><mi>n</mi></msub><mo>,</mo><mo>&#160;</mo><msub><mi>S</mi><mi>n</mi></msub></math>.</p> <p>a) H&atilde;y viết c&aacute;c hệ thức li&ecirc;n hệ giữa c&aacute;c đại lượng đ&oacute;. Cần phải biết &iacute;t nhất mấy đại lượng để c&oacute; thể t&igrave;m được</p> <p>c&aacute;c đại lượng c&ograve;n lại?</p> <p>b) Lập bảng theo mẫu sau v&agrave; điền số th&iacute;ch hợp v&agrave;o &ocirc; trống:</p> <table style="border-collapse: collapse; width: 81.5483%; height: 230px;" border="1"> <tbody> <tr> <td style="width: 19.9575%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>1</mn></msub></math></td> <td style="width: 20.0637%; text-align: center;">d</td> <td style="width: 20.0637%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>n</mi></msub></math></td> <td style="width: 20.0637%; text-align: center;">n</td> <td style="width: 19.9575%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mi>n</mi></msub></math></td> </tr> <tr> <td style="width: 19.9575%; text-align: center;">-2</td> <td style="width: 20.0637%; text-align: center;">&nbsp;</td> <td style="width: 20.0637%; text-align: center;">55</td> <td style="width: 20.0637%; text-align: center;">20</td> <td style="width: 19.9575%; text-align: center;">&nbsp;</td> </tr> <tr> <td style="width: 19.9575%; text-align: center;">&nbsp;</td> <td style="width: 20.0637%; text-align: center;">-4</td> <td style="width: 20.0637%; text-align: center;">&nbsp;</td> <td style="width: 20.0637%; text-align: center;">15</td> <td style="width: 19.9575%; text-align: center;">120</td> </tr> <tr> <td style="width: 19.9575%; text-align: center;">3</td> <td style="width: 20.0637%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>4</mn><mn>27</mn></mfrac></math></td> <td style="width: 20.0637%; text-align: center;">7</td> <td style="width: 20.0637%; text-align: center;">&nbsp;</td> <td style="width: 19.9575%; text-align: center;">&nbsp;</td> </tr> <tr> <td style="width: 19.9575%; text-align: center;">&nbsp;</td> <td style="width: 20.0637%; text-align: center;">&nbsp;</td> <td style="width: 20.0637%; text-align: center;">17</td> <td style="width: 20.0637%; text-align: center;">12</td> <td style="width: 19.9575%; text-align: center;">72</td> </tr> <tr> <td style="width: 19.9575%; text-align: center;">2</td> <td style="width: 20.0637%; text-align: center;">-5</td> <td style="width: 20.0637%; text-align: center;">&nbsp;</td> <td style="width: 20.0637%; text-align: center;">&nbsp;</td> <td style="width: 19.9575%; text-align: center;">-205</td> </tr> </tbody> </table> <p><strong>Giải</strong></p> <p>a) C&aacute;c hệ thức li&ecirc;n hiện giữa&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>1</mn></msub><mo>,</mo><mo>&#160;</mo><mi>d</mi><mo>,</mo><mo>&#160;</mo><mi>n</mi><mo>,</mo><mo>&#160;</mo><msub><mi>u</mi><mi>n</mi></msub><mo>,</mo><mo>&#160;</mo><msub><mi>S</mi><mi>n</mi></msub></math> l&agrave;</p> <p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>n</mi></msub><mo>=</mo><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mi>d</mi><mo>;</mo><mo>&#160;</mo></math>&nbsp; &nbsp; &nbsp; &nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mi>n</mi></msub><mo>=</mo><mfrac><mrow><mi>n</mi><mfenced><mrow><msub><mi>u</mi><mn>1</mn></msub><mo>-</mo><msub><mi>u</mi><mi>n</mi></msub></mrow></mfenced></mrow><mn>2</mn></mfrac><mo>;</mo><mo>&#160;</mo></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mi>n</mi></msub><mo>=</mo><mfrac><mrow><mi>n</mi><mfenced open="[" close="]"><mrow><mn>2</mn><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mi>d</mi></mrow></mfenced></mrow><mn>2</mn></mfrac></math></p> <p>&nbsp; &nbsp; Cần biết &iacute;t nhất ba trong năm đại lượng&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>1</mn></msub><mo>,</mo><mo>&#160;</mo><mi>d</mi><mo>,</mo><mo>&#160;</mo><mi>n</mi><mo>,</mo><mo>&#160;</mo><msub><mi>u</mi><mi>n</mi></msub><mo>,</mo><mo>&#160;</mo><msub><mi>S</mi><mi>n</mi></msub></math> th&igrave; c&oacute; thể t&iacute;nh được hai đại lượng c&ograve;n lại.</p> <p>b) i) Cho&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>1</mn></msub><mo>=</mo><mo>-</mo><mn>2</mn><mo>,</mo><mo>&#160;</mo><msub><mi>u</mi><mi>n</mi></msub><mo>=</mo><mn>55</mn><mo>,</mo><mo>&#160;</mo><mi>n</mi><mo>=</mo><mn>20</mn></math>. T&iacute;nh d v&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mi>n</mi></msub></math>.</p> <p>&nbsp; &nbsp; &nbsp; &nbsp; Từ&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>n</mi></msub><mo>=</mo><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mi>d</mi></math>. Ta c&oacute;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>55</mn><mo>=</mo><mo>-</mo><mn>2</mn><mo>+</mo><mn>19</mn><mi>d</mi><mo>&#8658;</mo><mi>d</mi><mo>=</mo><mn>3</mn></math>.</p> <p>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mn>20</mn></msub><mo>=</mo><mfrac><mrow><mn>20</mn><mfenced><mrow><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><msub><mi>u</mi><mn>20</mn></msub></mrow></mfenced></mrow><mn>2</mn></mfrac><mo>=</mo><mn>10</mn><mfenced><mrow><mo>-</mo><mn>2</mn><mo>+</mo><mn>55</mn></mrow></mfenced><mo>=</mo><mn>530</mn></math></p> <p>&nbsp; &nbsp; ii) Cho&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>=</mo><mo>-</mo><mn>4</mn><mo>,</mo><mo>&#160;</mo><mi>n</mi><mo>=</mo><mn>15</mn><mo>,</mo><mo>&#160;</mo><msub><mi>S</mi><mi>n</mi></msub><mo>=</mo><mn>120</mn></math>. T&iacute;nh&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>1</mn></msub></math> v&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>n</mi></msub></math>.</p> <p>&nbsp; &nbsp; &nbsp; &nbsp; Ta c&oacute;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mi>n</mi></msub><mo>=</mo><mfrac><mrow><mi>n</mi><mfenced open="[" close="]"><mrow><mn>2</mn><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mi>d</mi></mrow></mfenced></mrow><mn>2</mn></mfrac><mo>&#8658;</mo><mn>120</mn><mo>=</mo><mfrac><mn>15</mn><mn>2</mn></mfrac><mfenced open="[" close="]"><mrow><mn>2</mn><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><mn>14</mn><mo>.</mo><mo>(</mo><mo>-</mo><mn>4</mn><mo>)</mo></mrow></mfenced></math></p> <p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mn>240</mn><mo>=</mo><mn>30</mn><msub><mi>u</mi><mn>1</mn></msub><mo>-</mo><mn>840</mn><mo>&#8658;</mo><msub><mi>u</mi><mn>1</mn></msub><mo>=</mo><mn>36</mn></math></p> <p>&nbsp; &nbsp; &nbsp; &nbsp; Từ đ&oacute;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>n</mi></msub><mo>=</mo><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mi>d</mi><mo>=</mo><mn>36</mn><mo>+</mo><mn>14</mn><mo>.</mo><mo>(</mo><mo>-</mo><mn>4</mn><mo>)</mo><mo>=</mo><mo>-</mo><mn>20</mn></math></p> <p>&nbsp; &nbsp; iii) Cho&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>1</mn></msub><mo>=</mo><mn>3</mn><mo>,</mo><mo>&#160;</mo><mi>d</mi><mo>=</mo><mfrac><mn>4</mn><mn>27</mn></mfrac><mo>;</mo><mo>&#160;</mo><msub><mi>u</mi><mi>n</mi></msub><mo>=</mo><mn>7</mn><mo>.</mo><mo>&#160;</mo></math>T&igrave;m n v&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mi>n</mi></msub></math></p> <p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Ta c&oacute;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>n</mi></msub><mo>=</mo><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mi>d</mi><mo>&#8658;</mo><mn>7</mn><mo>=</mo><mn>3</mn><mo>+</mo><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>.</mo><mfrac><mn>4</mn><mn>27</mn></mfrac><mo>&#8658;</mo><mi>n</mi><mo>-</mo><mn>1</mn><mo>=</mo><mn>27</mn><mo>&#8658;</mo><mi>n</mi><mo>=</mo><mn>28</mn></math></p> <p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mi>n</mi></msub><mo>=</mo><mfrac><mrow><mi>n</mi><mfenced><mrow><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><msub><mi>u</mi><mi>n</mi></msub></mrow></mfenced></mrow><mn>2</mn></mfrac><mo>=</mo><mfrac><mrow><mn>28</mn><mfenced><mrow><mn>3</mn><mo>+</mo><mn>7</mn></mrow></mfenced></mrow><mn>2</mn></mfrac><mo>=</mo><mn>140</mn></math></p> <p>&nbsp; &nbsp; &nbsp;iv) Cho&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>n</mi></msub><mo>=</mo><mn>17</mn><mo>,</mo><mo>&#160;</mo><mi>n</mi><mo>=</mo><mn>12</mn><mo>,</mo><mo>&#160;</mo><msub><mi>S</mi><mi>n</mi></msub><mo>=</mo><mn>72</mn></math>. T&igrave;m&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>1</mn></msub></math> v&agrave; d.</p> <p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Ta c&oacute;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>n</mi></msub><mo>=</mo><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mi>d</mi></math> v&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mi>n</mi></msub><mo>=</mo><mfrac><mrow><mi>n</mi><mfenced><mrow><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><msub><mi>u</mi><mi>n</mi></msub></mrow></mfenced></mrow><mn>2</mn></mfrac></math></p> <p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mn>72</mn><mo>=</mo><mfrac><mrow><mn>12</mn><mfenced><mrow><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><mn>17</mn></mrow></mfenced></mrow><mn>2</mn></mfrac><mo>&#8658;</mo><msub><mi>u</mi><mn>1</mn></msub><mo>=</mo><mo>-</mo><mn>5</mn></math></p> <p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Từ&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>n</mi></msub><mo>=</mo><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><mo>(</mo><mi>n</mi><mo>-</mo><mn>1</mn><mo>)</mo><mi>d</mi><mo>&#8658;</mo><mn>17</mn><mo>=</mo><mo>-</mo><mn>5</mn><mo>+</mo><mn>11</mn><mi>d</mi><mo>&#8658;</mo><mi>d</mi><mo>=</mo><mn>2</mn></math></p> <p>&nbsp; &nbsp; &nbsp; v) Cho&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>1</mn></msub><mo>=</mo><mn>2</mn><mo>,</mo><mo>&#160;</mo><mi>d</mi><mo>=</mo><mo>-</mo><mn>5</mn><mo>,</mo><mo>&#160;</mo><msub><mi>S</mi><mi>n</mi></msub><mo>=</mo><mo>-</mo><mn>205</mn><mo>.</mo><mo>&#160;</mo></math>T&igrave;m&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>n</mi></msub></math> v&agrave; n.</p> <p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Ta c&oacute;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mi>n</mi></msub><mo>=</mo><mfrac><mrow><mi>n</mi><mfenced open="[" close="]"><mrow><mn>2</mn><msub><mi>u</mi><mn>1</mn></msub><mo>-</mo><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mi>d</mi></mrow></mfenced></mrow><mn>2</mn></mfrac><mo>&#8658;</mo><mo>-</mo><mn>205</mn><mo>=</mo><mfrac><mrow><mi>n</mi><mfenced open="[" close="]"><mrow><mn>4</mn><mo>-</mo><mn>5</mn><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced></mrow></mfenced></mrow><mn>2</mn></mfrac></math></p> <p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mi>n</mi><mo>(</mo><mn>9</mn><mo>-</mo><mn>5</mn><mi>n</mi><mo>)</mo><mo>=</mo><mo>-</mo><mn>410</mn><mo>&#8658;</mo><mn>5</mn><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mn>9</mn><mi>n</mi><mo>-</mo><mn>410</mn><mo>=</mo><mn>0</mn><mo>&#8658;</mo><mi>n</mi><mo>=</mo><mn>10</mn></math> (loại n = -82)</p> <p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Từ&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>n</mi></msub><mo>=</mo><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mi>d</mi></math> suy ra&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>n</mi></msub><mo>=</mo><mn>2</mn><mo>+</mo><mn>9</mn><mfenced><mrow><mo>-</mo><mn>5</mn></mrow></mfenced><mo>=</mo><mo>-</mo><mn>43</mn></math>.</p> <p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;</p>
Hướng dẫn Giải Bài 3 (trang 97, SGK Toán Đại số & Giải Tích 11)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 3 (trang 97, SGK Toán Đại số & Giải Tích 11)
GV: GV colearn