Bài 12: Liên kết cộng hóa trị
Hướng dẫn giải Em có thể (Trang 63 SGK Hóa 10, Bộ Kết nối tri thức với cuộc sống)
<p>Ph&acirc;n biệt được li&ecirc;n kết ion, li&ecirc;n kết cộng h&oacute;a trị ph&acirc;n cực v&agrave; li&ecirc;n kết cộng h&oacute;a trị kh&ocirc;ng ph&acirc;n cực theo độ &acirc;m điện.</p> <p><strong>Lời giải:</strong></p> <p>Dựa v&agrave;o hiệu độ &acirc;m điện của c&aacute;c nguy&ecirc;n tử, dự đo&aacute;n loại li&ecirc;n kết:</p> <p>-&nbsp;<span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 22.5px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;&amp;#x2264;&lt;/mo&gt;&lt;mfenced open=&quot;|&quot; close=&quot;|&quot;&gt;&lt;msub&gt;&lt;mo&gt;&amp;#x2206;&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/msub&gt;&lt;/mfenced&gt;&lt;mo&gt;&amp;lt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/math&gt;"><span id="MJXc-Node-1" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">0</span></span><span id="MJXc-Node-4" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">&le;</span></span><span id="MJXc-Node-5" class="mjx-mfenced"><span id="MJXc-Node-6" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">|</span></span><span id="MJXc-Node-7" class="mjx-msub"><span class="mjx-base"><span id="MJXc-Node-8" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">&Delta;</span></span></span><span class="mjx-sub"><span id="MJXc-Node-9" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x</span></span></span></span><span id="MJXc-Node-10" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">|</span></span></span><span id="MJXc-Node-11" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">&lt;</span></span><span id="MJXc-Node-12" class="mjx-mn MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">0</span></span><span id="MJXc-Node-13" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-14" class="mjx-mn MJXc-space1"><span class="mjx-char MJXc-TeX-main-R">4</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&le;</mo><mfenced open="|" close="|"><msub><mo>∆</mo><mi>x</mi></msub></mfenced><mo>&lt;</mo><mn>0</mn><mo>,</mo><mn>4</mn></math></span></span>: li&ecirc;n kết cộng h&oacute;a trị kh&ocirc;ng ph&acirc;n cực</p> <p>-&nbsp;<span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 22.5px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mo&gt;&amp;#x2264;&lt;/mo&gt;&lt;mfenced open=&quot;|&quot; close=&quot;|&quot;&gt;&lt;msub&gt;&lt;mo&gt;&amp;#x2206;&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/msub&gt;&lt;/mfenced&gt;&lt;mo&gt;&amp;lt;&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;7&lt;/mn&gt;&lt;/math&gt;"><span id="MJXc-Node-15" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-16" class="mjx-mrow"><span id="MJXc-Node-17" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">0</span></span><span id="MJXc-Node-18" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-19" class="mjx-mn MJXc-space1"><span class="mjx-char MJXc-TeX-main-R">4</span></span><span id="MJXc-Node-20" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">&le;</span></span><span id="MJXc-Node-21" class="mjx-mfenced"><span id="MJXc-Node-22" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">|</span></span><span id="MJXc-Node-23" class="mjx-msub"><span class="mjx-base"><span id="MJXc-Node-24" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">&Delta;</span></span></span><span class="mjx-sub"><span id="MJXc-Node-25" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x</span></span></span></span><span id="MJXc-Node-26" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">|</span></span></span><span id="MJXc-Node-27" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">&lt;</span></span><span id="MJXc-Node-28" class="mjx-mn MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">1</span></span><span id="MJXc-Node-29" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-30" class="mjx-mn MJXc-space1"><span class="mjx-char MJXc-TeX-main-R">7</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>,</mo><mn>4</mn><mo>&le;</mo><mfenced open="|" close="|"><msub><mo>∆</mo><mi>x</mi></msub></mfenced><mo>&lt;</mo><mn>1</mn><mo>,</mo><mn>7</mn></math></span></span>: li&ecirc;n kết cộng h&oacute;a trị ph&acirc;n cực.</p> <p>-&nbsp;<span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 22.5px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mfenced open=&quot;|&quot; close=&quot;|&quot;&gt;&lt;msub&gt;&lt;mo&gt;&amp;#x2206;&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/msub&gt;&lt;/mfenced&gt;&lt;mo&gt;&amp;#x2265;&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;7&lt;/mn&gt;&lt;/math&gt;"><span id="MJXc-Node-31" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-32" class="mjx-mrow"><span id="MJXc-Node-33" class="mjx-mfenced"><span id="MJXc-Node-34" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">|</span></span><span id="MJXc-Node-35" class="mjx-msub"><span class="mjx-base"><span id="MJXc-Node-36" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">&Delta;</span></span></span><span class="mjx-sub"><span id="MJXc-Node-37" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x</span></span></span></span><span id="MJXc-Node-38" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">|</span></span></span><span id="MJXc-Node-39" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">&ge;</span></span><span id="MJXc-Node-40" class="mjx-mn MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">1</span></span><span id="MJXc-Node-41" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-42" class="mjx-mn MJXc-space1"><span class="mjx-char MJXc-TeX-main-R">7</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><msub><mo>∆</mo><mi>x</mi></msub></mfenced><mo>&ge;</mo><mn>1</mn><mo>,</mo><mn>7</mn></math></span></span>: li&ecirc;n kết ion</p>
Xem lời giải bài tập khác cùng bài